Service design center for device assisted services

Abstract

A technique involves modular storage of network service plan components and provisioning of same. A subset of the capabilities of a service design system can be granted to a sandbox system to enable customization of service plan offerings or other controls.

Claims

We claim: 1. A method for operating a service design system to implement a service plan including one or more wireless network data services to be provided by one or more wireless access networks to one or more wireless end-user devices, the method comprising: accepting, via a service design system user interface, user input defining an event associated with a use of at least one of the wireless access networks according to the service plan; receiving, via the service design system user interface, user input specifying a plurality of service policies associated with the defined event, the service policies including at least two of an access policy that defines rights to access a wireless network data service selected from a plurality of Internet data service definitions available for user selection via the interface, a service accounting policy that defines accounting for using the wireless network data service, and a notification policy that defines when to provide notifications corresponding to the wireless network data service; creating a definition for the service plan based at least in part on the defined event and the at least two specified service policies; and automatically translating the service plan definition into instructions for one or more policy implementation elements, the instructions to cause the one or more policy implementation elements to implement the specified service policies when the event is detected for at least one applicable wireless end-user device's use of at least one of the wireless access networks, the at least one applicable wireless end-user device subject to the service plan. 2. The method of claim 1 , further comprising: receiving, via the service design center user interface, user input specifying one or more device states of a wireless end-user device, wherein a device state is a property of the device; and associating the device state with the event definition. 3. The method of claim 1 , further comprising: identifying, from user input, a first group of wireless end-user devices to be bound to the service plan; and providing the instructions to one or more policy implementation elements to cause the specified service policies to take effect for the first group of wireless end-user devices. 4. The method of claim 3 , wherein at least one of the first group of wireless end-user devices subscribes to the service plan. 5. The method of claim 1 , wherein the service design center user interface includes one or more picklists for defining the event, each picklist including a plurality of options. 6. The method of claim 5 , wherein the one or more picklists include: a first picklist that includes at least one option that corresponds to a measure for an amount of usage of a wireless network data service; and one or more second picklists that include options for specifying the amount of usage. 7. The method of claim 2 , wherein the association comprises a conditional relationship that specifies one or more time window criteria between when the defined event is detected and when the device state is present on the device. 8. The method of claim 7 , wherein the window criteria includes an order of occurrence between the event and the device state. 9. The method of claim 2 , wherein the device state comprises a location of the device. 10. The method of claim 2 , wherein the association comprises a conditional relationship wherein the device state is present when the defined event is detected. 11. The method of claim 2 , wherein the device state comprises whether a given application is presently executing on the device.
BACKGROUND Today, end user devices (such as a mobile phone, tablet computer, or notebook computer) sign up for one or more mutually exclusive service plans (e.g., text messages, voice, or data) before being allowed to use an access network. The service plans usually are either pre-paid or post-pay. Depending on which service plans a user subscribes, a cost of using the access network can vary. The access network determines whether the requested use is for the mutually exclusive categories of text messages, voice, or data. Once the appropriate service plan is determined, the access network can use a policy of the service plan to determine the cost for the use. However, a user is limited to selecting one service plan from each of these three mutually exclusive categories, and thus the user is limited in selecting how he/she wants to use the access network. For example, a user cannot select multiple data plans for various data services to customize an end user device's use of the access network. The configuration of the access network to implement a particular service plan is also very difficult. For example, to create a service plan for data services, employees of the carrier that operate the access network will discuss basic attributes of the plan (e.g., whether to charge by MB or to be unlimited), and the cost of the plan. Then, an employee will enter into a network device the policy to track use of the access network (e.g., if the former is chosen) for end user devices that subscribe to the particular data plan. An employee also enters a policy into another network device for allowing end user devices that subscribe to the data plan to use the access network. This cumbersome process makes the design of the service plan rigid, time-consuming, and prone to errors, thereby taking a long time to complete and have users begin selecting the data plan for their data services. The foregoing example of trends and issues is intended to be illustrative and not exclusive. Other limitations of the art will become apparent to those of skill in the relevant art upon a reading of the specification and a study of the drawings. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 depicts an example of a system including an access network and a network service plan provisioning system. FIG. 2 depicts a conceptual diagram of an example of a hierarchical structure useful for understanding service plan design and provisioning. FIGS. 3A through 3AB depict screenshots of a specific implementation of a service design system. FIG. 4 depicts a flowchart of an example of a method for creating subscriber groups. FIG. 5 depicts a flowchart of an example of a method for creating service plan components. FIG. 6 depicts a flowchart of an example of a method for creating service plans from service plan components. FIG. 7 depicts a flowchart of an example of a method for creating service plan catalogs from subscriber groups and service plans. FIG. 8 depicts an example of system including an access network and a network service plan provisioning sandbox system. FIG. 9 depicts a conceptual diagram of an example of a service design system sandbox implementation. FIG. 10 depicts a conceptual diagram of an example of a service design system sandbox implementation. FIG. 11 depicts an example of a computer system on which techniques described in this paper can be implemented. DETAILED DESCRIPTION FIG. 1 depicts an example of a system 100 including an access network 102 and a network service plan provisioning system 104 . In the example of FIG. 1 , the access network 102 receives network element provisioning instructions to enforce plan policies from the network service plan provisioning system 104 . In a specific implementation, the network service plan provisioning system 104 can receive service plan selection data from the access network, and provide new instructions based upon the selection. The access network 102 can include a network that can provide network services to a device. The access network 102 can include a wireless network (e.g., WiFi, cellular, or some other wireless technology) and/or a wired network (e.g., LAN or DSL). Wireless or wired devices can be referred to as “on” the access network 102 when the devices complete relevant association, authentication, and/or other procedures that enable to devices to obtain the services offered on the access network 102 in accordance with applicable known or convenient techniques. Advantageously, the devices can have inter-network policies that are provided by the network service plan provisioning system 104 in accordance with techniques described in this paper. Inter-network policies, as the term is used in this paper, refer to traffic control, charging, and notification policies that remain in effect after a device passes from one network to another (e.g., by roaming). Intra-network policies, on the other hand, refer to control traffic control limited to the boundaries of a network (e.g., in-network traffic control, charging, and/or notification policies, plus an optional traffic control policy that permits or prevents roaming to another network). It is likely that it will be desirable to couple the access network 102 to another network. Networks can include enterprise private networks and virtual private networks (collectively, private networks), which are well known to those of skill in computer networks. As the name suggests, private networks are under the control of an entity rather than being open to the public. Private networks include a head office and optional regional offices (collectively, offices). Many offices enable remote users to connect to the private network offices via some other network, such as the Internet, a public switched telephone network (PSTN), or the like. As used in this paper, a private network is intended to mean a network that is under the control of a single entity or hierarchy of entities. This is typically the case for cellular networks, wireless infrastructure networks, company LANs and WANs, and the like. In the example of FIG. 1 , the access network 102 and the network service plan provisioning system 104 may or may not be on the same private network, or a first entity may own or control a portion of the access network 102 and a second entity may own or control a portion of the access network 102 as well as the network service plan provisioning system 104 . For example, a carrier may include the network service plan provisioning system 104 , but the access network 102 may include a WiFi network owned by a local business entity. Advantageously, in a specific implementation, the carrier can continue to provide policy control while a subscriber is on the access network 102 . Where the access network 102 includes a cellular network of the carrier in this example, even greater policy control may be possible. It should be noted that a subscriber can be defined broadly to include any applicable device on the access network 102 . For example, the access network 102 could include parking meter devices, food-dispensing machines, and automobile onboard computers, as well as smart phones and other devices frequently used by humans. In the example of FIG. 1 , the network service plan provisioning system 104 includes a service design engine 106 , a service plan datastore 108 , an optional policy enforcement priority rule datastore 110 , an enforcement element provisioning instruction translation engine 112 , a network provisioning instruction set 114 , a network element provisioning engine 116 , and analytics engine 118 , a historical datastore 120 and a service plan selection engine 122 . The service design engine 106 inputs service plan data structures and other related data that is described later in more detail into the service plan datastore 108 . Engines, as described in this paper, refer to computer-readable media coupled to a processor. The computer-readable media have data, including executable files, that the processor can use to transform the data and create new data. An engine can include a dedicated or shared processor and, typically, firmware or software modules that are executed by the processor. Depending upon implementation-specific or other considerations, an engine can be centralized or its functionality distributed. An engine can include special purpose hardware, firmware, or software embodied in a computer-readable medium for execution by the processor. As used in this paper, a computer-readable medium is intended to include all mediums that are statutory (e.g., in the United States, under 35 U.S.C. 101), and to specifically exclude all mediums that are non-statutory in nature to the extent that the exclusion is necessary for a claim that includes the computer-readable medium to be valid. Known statutory computer-readable mediums include hardware (e.g., registers, random access memory (RAM), non-volatile (NV) storage, to name a few), but may or may not be limited to hardware. Datastores, as described in this paper, can be implemented, for example, as software embodied in a physical computer-readable medium on a general- or specific-purpose machine, in firmware, in hardware, in a combination thereof, or in an applicable known or convenient device or system. Datastores in this paper are intended to include any applicable organization of data, including tables, comma-separated values (CSV) files, traditional databases (e.g., SQL), or other applicable known or convenient organizational formats. Datastore-associated components, such as database interfaces, can be considered “part of” a datastore, part of some other system component, or a combination thereof, though the physical location and other characteristics of datastore-associated components is not critical for an understanding of the techniques described in this paper. The service plan datastore 108 can store service plan data structures. As used in this paper, a data structure is associated with a particular way of storing and organizing data in a computer so that it can be used efficiently within a given context. Data structures are generally based on the ability of a computer to fetch and store data at any place in its memory, specified by an address, a bit string that can be itself stored in memory and manipulated by the program. Thus some data structures are based on computing the addresses of data items with arithmetic operations; while other data structures are based on storing addresses of data items within the structure itself. Many data structures use both principles, sometimes combined in non-trivial ways. The implementation of a data structure usually entails writing a set of procedures that create and manipulate instances of that structure. In an example of a system where the service plan datastore 108 is implemented as a database, a database management system (DBMS) can be used to manage the service plan datastore 108 . In such a case, the DBMS may be thought of as part of the service plan datastore 108 or as part of the service design engine 106 and/or the enforcement element provisioning instruction translation engine 112 , or as a separate functional unit (not shown). A DBMS is typically implemented as an engine that controls organization, storage, management, and retrieval of data in a database. DBMSs frequently provide the ability to query, backup and replicate, enforce rules, provide security, do computation, perform change and access logging, and automate optimization. Examples of DBMSs include Alpha Five, DataEase, Oracle database, IBM DB2, Adaptive Server Enterprise, FileMaker, Firebird, Ingres, Informix, Mark Logic, Microsoft Access, InterSystems Cache, Microsoft SQL Server, Microsoft Visual FoxPro, MonetDB, MySQL, PostgreSQL, Progress, SQLite, Teradata, CSQL, OpenLink Virtuoso, Daffodil DB, and OpenOffice.org Base, to name several. Database servers can store databases, as well as the DBMS and related engines. Any of the datastores described in this paper could presumably be implemented as database servers. It should be noted that there are two logical views of data in a database, the logical (external) view and the physical (internal) view. In this paper, the logical view is generally assumed to be data found in a report, while the physical view is the data stored in a physical storage medium and available to a specifically programmed processor. With most DBMS implementations, there is one physical view and an almost unlimited number of logical views for the same data. A DBMS typically includes a modeling language, data structure, database query language, and transaction mechanism. The modeling language is used to define the schema of each database in the DBMS, according to the database model, which may include a hierarchical model, network model, relational model, object model, or some other applicable known or convenient organization. An optimal structure may vary depending upon application requirements (e.g., speed, reliability, maintainability, scalability, and cost). One of the more common models in use today is the ad hoc model embedded in SQL. Data structures can include fields, records, files, objects, and any other applicable known or convenient structures for storing data. A database query language can enable users to query databases, and can include report writers and security mechanisms to prevent unauthorized access. A database transaction mechanism ideally ensures data integrity, even during concurrent user accesses, with fault tolerance. DBMSs can also include a metadata repository; metadata is data that describes other data. In a specific implementation, the service design engine 106 inputs policy enforcement priority rule data structures in the policy enforcement priority rule datastore 110 . An aspect of policy control described in this paper entails the superposition of a first traffic classification filter of a service plan over a second traffic classification filter of the service plan. There is more than one way to accomplish this superposition including, for example, ordering the first and second traffic classification filter such that the first traffic classification filter is applied to a traffic event before the second traffic classification filter, trapping a match of the first traffic classification filter in a kernel until the second traffic classification filter is matched (then applying a first relevant action of an action list), or applying an explicit policy enforcement priority rule. Because implicit policy enforcement priorities can be used, the policy enforcement priority rule datastore 110 is optional. It should be noted that explicit policy enforcement priorities can be mandated in accordance with implementation- and/or configuration-specific parameters or a combination of implicit and explicit policy enforcement priorities can be used. In a specific implementation, explicit priorities trump implicit priorities (e.g., ordering). In the example of FIG. 1 , the enforcement element provisioning instruction translation engine 112 converts service plan data structures in the service plan datastore 108 into respective network provisioning instruction set data structures, which are stored in the network provisioning instruction set datastore 114 . The translation engine 112 can also convert the relevant policy enforcement priority rule data structures from the policy enforcement priority rule datastore 110 , if applicable, for inclusion in the network provisioning instruction set data structures. In the example of FIG. 1 , the network element provisioning engine 116 provides network element provisioning instructions to enforce plan policies to the access network 102 . The network element provisioning instructions are applicable to one or more devices that may or may not currently be on the access network 102 . In a specific implementation, the network element provisioning instructions are sent to the access network 102 only when the applicable one or more devices are on the access network 102 . In the example of FIG. 1 , the analytics engine 118 receives data from the access network 102 , which can include subscriber feedback or instructions. For the purposes of this example, the data is presumed to include service plan selection data, which is used by the service plan selection engine 122 . The analytics engine 118 can modify the data in a manner that is useful to the network service plan provisioning system 104 , which can include triggering actions based upon feedback or instructions from the access network 102 . The data can be stored in the historical datastore 120 , which can be used by the service design engine 106 . For example, the service design engine 106 can specify whether more or less data should be requested from the device (e.g., based upon network state), determine whether to reduce counts or other notifications, specify parameters that are to be recorded within classifications, or the like. Network state can be associated with a network busy state (or, conversely, a network availability state). A network availability state can include, for example, a state or measure of availability/capacity of a segment of a network (e.g., a last edge element of a wireless network). A network busy state can include, for example, a state or measure of the network usage level or network congestion of a segment of a network (e.g., a last edge element of a wireless network). In some embodiments, network availability state and network busy state are inverse measures. As used herein with respect to certain embodiments, network availability state and network busy state can be used interchangeably based on, for example, a design choice (e.g., designing to assign background policies based on a network busy state or a network availability state yields similar results, but they are different ways to characterize the network performance and/or capacity and/or congestion). In some embodiments, network availability state and network busy state are dynamic measures as such states change based on network usage activities (e.g., based on a time of day, availability/capacity level, congestion level, and/or performance level). In some embodiments, differential network service usage control of a network service usage activity is based on a network busy state or network availability state. In a specific implementation, there are four levels of network busy state (not busy, light, medium, critical). In the example of FIG. 1 , the service plan selection engine 122 receives service plan selection data from the analytics engine 118 . The service plan selection data can be from a device on the access network 102 , originate from the access network 102 , or a combination thereof. In a specific implementation, the service plan selection data is entered at a device by a user and forwarded to the service plan selection engine 122 through the access network 102 . Upon receipt of the service plan selection data, the service plan selection engine 122 can, if appropriate, select a new network provisioning instruction set in the network provisioning instruction set 114 for provisioning to the access network 102 in the manner described previously. (The service plan selection engine 122 may or may not be capable of triggering the service design engine 106 to modify a service plan, which is translated into a network provisioning instruction set for selection by the service plan selection engine 122 .) FIG. 2 depicts a conceptual diagram 200 of an example of a hierarchical structure useful for understanding service plan design and provisioning. The conceptual diagram 200 includes a collection of datastores associated with service plans 202 , a collection of datastores associated with subscribers 204 , a plan catalogs datastore 206 , and a service design engine 208 . The collection of datastores 202 includes a filters datastore 210 , a components datastore 212 , a plans datastore 214 , a rules datastore 218 , a traffic control rule data structure 220 , a charging data structure 222 , and a notification data structure 224 . The filters datastore 210 can include, for example, traffic control filter data structures that, when used, allow, block, throttle, delay (for a fixed period of time), and defer (until an event) a matched traffic event. Aspects of a traffic event to which a filter is mapped can include, for example, by remote destination, by application, by content (e.g., generic content such as streaming, specific content identifiable using regular expressions, etc.), by protocol, by port, by target operating system, to name several. In the context of service design, it has proven convenient to offer designers filter packages that combine a traffic control filter with an action. Such actions can include notify (which triggers a notification to be sent to a notification destination), cap (which increments a count), trap (which traps a match at the kernel level to see if another filter is matched later), and instructions (which can result in some other instruction to be executed). The components datastore 212 can include, for example, a set of filter packages, including at least one filter, and a set of policies. Because components can inherit policy, it is not an explicit requirement that a component include at least one policy. However, when a component is assembled in a service plan offering, the component will have either a policy in the set of policies or will inherit a policy. The plans datastore 214 can include, for example, a hierarchy of components. The components are organized into classes, which can include, for example, carrier, network protection, application (paid or sponsored), interceptor (marketing interceptor or parental control), bulk, post-bulk, and end-of-life. It at least one implementation, the end-of-life class is handled by a default, rather than a component that is stored in the components datastore 212 . The rules datastore 218 includes policy rules. For illustrative purposes, three policy type data structures are depicted as directed toward the rules datastore 218 : traffic control policy data structure 220 , charging policy data structure 222 , and notification policy data structure 224 . The traffic control policy data structure 220 can include a variety of filter packages designed to control the flow of traffic, such as allow or block, and take certain actions in association with the traffic control, such as cap-and-match. The charging policy data structure 222 can be directed to a user or a sponsor (who can subsidize network service usage) and can include a charging code. The notification policy data structure 224 can be directed to a user, a sponsor, or an engine that takes further action in accordance with variables or constant parameters in the notification and can include content for use by the target of the notification and a trigger (e.g., a selectable button that results in the execution of relevant instructions). Notification types include plan limit thresholds (plan has reached a specified % of charging policy cap), plan cap limit (requested network activity has been capped because charging policy cap has been reached), plan limit overage (overage has reached a specified %; offer the option of overage, new service plan, block ongoing usage, etc.), plan expiration (plan expired; offer option to buy a new plan), activity block event (activity blocked by filter or activity state change), no capable plan (plan does not support the requested network activity, which has been blocked), marketing interceptor (specific message or offer based on current activity or status), promotional message (overview of what plan provides), upsell offer (upsell tiered plan based on current usage). Notification actions can be added to notifications to make them “actionable,” which means that a recipient of the notification can provide feedback or instructions in response to the notification. Notification actions can include, for example, OK/dismiss, cancel, acknowledge, buy (links to buy workflow), more info (e.g., more information regarding why a traffic event was blocked, suggestions for traffic activity changes or service plan purchase), back (call a previous workflow screen), next (call a next workflow screen), launch (launch URL or application). Notification customizations can include foreground, background, foreground/background (display in foreground if activity is in foreground and in background otherwise), title, subtitle, text, icon, buttons/actions, “do not show again” (will not show again for a specified time), default target button (specifies a default response action), or the like. The collection of datastores associated with subscribers 204 includes a subscribers datastore 226 and a subscriber groups datastore 228 . The subscribers datastore 226 includes subscriber data structures that include information about subscribers. A minimalist subscriber data structure is likely to at least include a subscriber identification that is unique within the system 200 or universally, such as an International Mobile Subscriber Identity (IMSI). It may also be useful to include such information as a phone number, device type, and/or International Mobile Equipment Identity (IMEI). The subscriber groups datastore 228 includes subscriber group data structures that include groupings of subscribers. The types of groupings that can be done in a system depends upon the amount of information that is known about subscribers. For example, subscribers can be grouped by device type, device characteristics, demographic characteristics of the subscriber, region, etc. The plan catalogs datastore 206 includes plan catalog data structures that are available to consumers or providers of network service plans. The plan catalog data structures are combinations of components from the collection of datastores associated with service plans 202 and the collection of datastores associated with subscribers 204 . The service design engine 208 can manage the datastores depicted in the example of FIG. 2 . Aspects of service design and/or provisioning can be assigned to agents of the system 200 . The amount of control over the system that an agent is granted is based upon the role of the agent, which can be recorded in the roles datastore 230 . Roles can be set to super user, portal admin, system admin, or some other role that is applicable to the capabilities of the design center (e.g., whether it is a carrier design center, or a sandbox for an enterprise, applications developer, community-based organization, gifting organization, Mobile Virtual Network Operator (MVNO), etc.) and the human agent who is using the system. Screenshots of a user interface for a specific implementation of a service design engine, such as the service design engine 208 , can be used to illustrate some of the functionality of the service design engine 208 . FIGS. 3A-3AB depict screenshots of a User Interface (UI) for a specific implementation of a service design system. In the example of FIG. 3A , following login, a designer is directed to a service design center UI home page with an open tasks field 302 , a recent activity field 304 , and a menu buttons field 306 . The open tasks field 302 can include drafts that are awaiting approval, beta tests that are awaiting publication/deployment, and deployed plans that are targeted for termination, or other open tasks. The recent activity field 304 can include as much or as little information as is deemed useful to designers. The menu buttons field 306 includes eight buttons, a subscribers button, a subscriber group button, a plans button, a plan catalogs button, a templates button, a reports button, a settings button, and a my profile button. Selecting the my profile button brings a designer to screenshot 300 B ( FIG. 3B ), where the designer can enter information such as first name, last name, password, and role. Roles can be set to super user, portal admin, system admin, or some other role that is applicable to the capabilities of the design center (e.g., whether it is a carrier design center, or a sandbox for an enterprise, applications developer, community-based organization, gifting organization, Mobile Virtual Network Operator (MVNO), etc.) and the particular designer who is using the system. Selecting the settings button of the menu buttons field 306 brings a designer to screenshot 300 C ( FIG. 3C ), where the designer can select a roles tab, a users tab, or a presets tab from a tabs menu 308 . Selecting the Roles tab from the tabs menu 308 enables a designer to add roles, such as component editor, plan creator, plan group publisher, plan viewer, report viewer, and system admin. It may be noted that a designer will not necessarily be able to view all roles in this tab and, in a likely implementation, may be unable to create roles with rights the designer does not have (e.g., a system admin may have fewer rights than a super user and different rights than a portal admin). Selecting the Users tab from the tabs menu 308 enables a designer to add and edit users. In the example of FIG. 3D (screenshot 300 D), the user das has been selected, and das' details, such as username (email address), first name, last name, whether the user is enabled, roles, and available roles are depicted. Selecting the Presets tab from the tabs menu 308 enables a designer to choose a default plan icon as depicted in the example of FIG. 3E (screenshot 300 E). Selecting the subscribers button of the menu buttons field 306 and selecting a new subscriber brings a designer to screenshot 300 F ( FIG. 3F ). In this specific implementation, the subscriber information includes a device name, subscriber group, owner name, locale, EID, phone number, device type, operating system version, CDMA subscriber details, and GSM/LTE subscriber details. This information can also be edited for subscribers that are already in the subscribers datastore. Selecting the subscriber groups button of the menu buttons field 306 brings a designer to screenshot 300 G ( FIG. 3G ), where the designer can select a properties tab or an import tab. Choosing to create a new subscriber group prompts the designer to enter a group name and description, and to drag subscribers into the group. Selecting the import tab enables the designer to import subscribers from a subscribers datastore in a batch operation. See, e.g., FIG. 3H , screenshot 300 H. Information can also be edited for subscriber groups that are already in the subscriber groups datastore. Selecting the plans button of the menu buttons field 306 and selecting a new plan brings a designer to screenshot 300 I ( FIG. 3I ). In this specific implementation, the plan information includes a plan icon, a plan name, a plan short description, a plan description, a plan version, a plan type (e.g., sponsored, paid, or carrier), an “is default” checkbox, an “is repurchaseable” checkbox, a billing price, and a display price (in case the billing price is not the same as the billing price). A next screenshot 300 J ( FIG. 3J ) enables entry of further information about the plan, including charging policy (e.g., based on data used or time spent, usage limits and overage allowances), billing policy (e.g., one-time or recurring, usage reporting, and pre- or post-billing). It is possible in this specific implementation to show a policy label on the device and include billing identifiers. A charging code can also be created or selected by the designer. A next screenshot 300 K ( FIG. 3K ) includes an option to add components, either by creating a new component or cloning an existing component. In the example of FIG. 3K , three components have been added to the list of components for the plan, with explicit priorities 1 , 2 , and 3 . Note that in this specific implementation, the number of tabs in the tab menu 310 increases as data is entered for the plan until the tab menu 310 includes a properties tab, a charging & billing tab, a components tab, a policy events tab, and a review tab. When the designer selects a component, such as the “Copy of No Youtube,” a component screenshot 300 L ( FIG. 3L ) is displayed, which includes a tab menu 312 that includes a properties tab, a filters tab, and a policy events tab. (The tab menu 312 can also include a charging policy tab if a charging policy is defined for the component.) Selecting the properties tab from the tab menu 312 enables the designer to edit the component name, service class (e.g., carrier, network protection, sponsored, specialized application, market interceptor, parental control, open access, and post-bulk), and whether the component has a charging policy explicitly defined or inherits the charging policy from the plan. It may be noted that the service class could be characterized to include an “end-of-life” service class for when a subscriber has no remaining service plan options, but in this specific implementation the end-of-life setting is not listed as a service class (described later). Selecting the filters tab from the tab menu 312 brings the designer to screenshot 300 M ( FIG. 3M ), where filters can be chosen for a selected component (in this example, the “No Youtube” component). When the designer selects a filter to edit, the designer is brought to screenshot 300 N ( FIG. 3N ), which facilitates editing of the filter name, description, whether the filter is associative only, whether the filter is “no-match,” filtering parameters (e.g., filter by remote destination, filter by application, filter by target operating system, filter by content, filter by protocol, filter by port), and whether and how to display in a launcher widget. Selecting the policy events tab from the tab menu 312 and creating a new policy event brings the designer to screenshot 300 O ( FIG. 3O ) where the designer can select policy events based upon network state when certain conditions (e.g., cap & no match, cap & match, block for a device, disallow and match, disallow and no match, in this network state, transitioning into this network state, and transitioning out of this network state) are met. Continuing to the next screenshot 300 P ( FIG. 3P ), the designer enters event properties, such as the name of the policy event, a description, whether to display notifications associated with the event in foreground or background, whether to send notification results to service, maximum number of times to send the notification, and whether the user can suppress future notifications. Note that in this specific implementation, the number of tabs in the tab menu 314 increases as data is entered for the policy event until the tab menu 314 includes a policy event tab, a properties tab, a messages tab, and a buttons tab. Continuing to the next screenshot 300 Q ( FIG. 3Q ), the designer enters message details, such as title, subtitle, short text, and long text. Clicking on “how to use variables” instructs the designer regarding what variables can be added to notifications, such as name of service plan, charging code name, filter (e.g., blocked, throttled, etc.), percentage of plan utilization in bytes or time, application name, overage limit, current overage, throttle rate, date when cycle will refresh, duration of cycle, name of plan matched after current plan reached a cap, name of plan matched after disallow matched, current roaming state, current active network, or host or domain, to name several. Continuing to the next screenshot 300 R ( FIG. 3R ), the designer determines whether to display upsell plans and enters buttons to enable subscriber responses to the notification (in this example, the view catalog and cancel buttons are enabled). The phone image 316 is intended to illustrate how the message and buttons will appear within a device, though the image will not necessarily be a perfect representation. When returning to the plan level (see FIG. 3K ), the designer can select the policy events tab from the tab menu 310 to display screenshot 300 S ( FIG. 3S ) and enter policy events at the plan level. It may be noted that the policy events described with reference to the examples of FIGS. 3O to 3R were associated with an individual component. In the example of FIG. 3S , a policy event associated with the network state “on a WiFi network” and on a Monday through Friday causes a notification to be sent when a cap and match is seen. Other policy event parameters can be set in a manner similar to those described with reference to FIGS. 3P to 3R . Upon completion of the plan described with reference to FIGS. 3I to 3S , the designer can select the review tab from the tab menu 310 (see, e.g., FIG. 3K ) to display screenshot 300 T ( FIG. 3T ). It may be noted that the review screen is “cut off,” which prevents observation of policy events, but this is not necessary to understand the nature of the review screen. In this example, the plan, which is stored as a “draft” plan, can be published for beta testing (and submitted for approval). Referring back to the home page (see, e.g., FIG. 3A ), selecting the plan catalogs button from the menu buttons field 306 brings a designer to screenshot 300 U ( FIG. 3U ). There, the designer can enter a plan catalog name, a plan catalog description, and a plan catalog version (or select a plan catalog from plan catalogs in a plan catalogs datastore). When the designer clicks “next,” the tab menu expands into a tab menu 318 , which includes the properties tab, a plans tab, a plan priorities tab, a tabs tab, a subscriber groups tab, an LCP error tab, an upsells tab, a promotions tab, and a review tab, as is illustrated in the example of FIG. 3V . Under the plans tab, the designer can drag plans into a plan catalog. When the designer selects the plan priorities tab from the tab menu 318 , the designer is brought to screenshot 300 W ( FIG. 3W ), where the plans of the plan catalog can be prioritized. The plans are prioritized per plan type (e.g., carrier plan, paid plan), and if there are multiple plans within a plan type, the plans can be prioritized within the plan types, as well. Some or all of the plans can also be designated as available upon activation. With versioning, subscribers having a previous plan version can continue to use the previous version, while new subscribers can be offered the most recent version. If an old plan expires, a subscriber can be offered the most recent version, as well. When the designer selects the tabs tab from the tab menu 318 , the designer is brought to screenshot 300 X ( FIG. 3X ), where the designer can organize tabs for display of plans. A subscriber's device can display, for example, one or more tabs such as games, social, productivity, media, free, paid, and all, and under the tabs the various plans can be listed in an order that is determinable by the designer. When the designer selects the subscriber groups tab from the tab menu 318 , the designer is brought to screenshot 300 Y ( FIG. 3Y ), where the designer can drag and drop subscriber groups. A Lacks Compatible Plan (LCP) error occurs when a traffic event is received for which there is no active service plan. LCP errors can be treated as a particular kind of policy event. As when designating the parameters of policy events, when the designer selects the LCP errors tab from the menu 318 , the designer has options similar to those described above with reference to FIGS. 3P to 3R . That is, the designer can choose applicable end-of-life properties, messages, and buttons. Upsells occur when offered from a component, plan, or plan catalog, and can be responsive to traffic events (e.g., an upsell for cheaper network service when using Facebook applications can occur when a subscriber consumes more expensive network services to use Facebook applications) or other events. When the designer selects the upsells tab from the menu 318 , the designer can edit upsell opportunities offered from, e.g., notifications within a plan catalog or any of its plans or components. Upsells can be edited much like policy events (e.g., properties, messages, and buttons). Promotions can be offered once or periodically. When the designer selects the promotions tab from the menu 318 , the designer can edit a frequency of a promotion in screenshot 300 Z ( FIG. 3Z ). Promotions can be edited much like policy events (e.g., properties, messages, and buttons). When the designer selects the review tab from the menu 318 , the designer can review the plan catalog as is illustrated in screenshot 300 AA ( FIG. 3AA ). Referring back to the home page (see, e.g., FIG. 3A ), selecting the templates button from the menu buttons field 306 enables a designer to work on filter templates. Because components can have versions, it can be desirable to create templated filters that, when placed in a component, automatically create a copy of the templated filter. That way, when the filter is changed for one version, it is not changed for another. It is also possible to simply reuse a filter in components, in which case if the filter is changed, it is changed for all of the components into which it was reused. Selecting the reports button from the menu buttons field 306 enables a designer to review reports. FIG. 3AB depicts a screenshot 300 AB with reports that are broken into several categories including, usage, revenue, popularity, health (fraud), per subscriber, and other. Reports are generated using information that is available from datastores of the service design system, which can include data in notifications from subscriber devices or, more generally, access networks. FIG. 4 depicts a flowchart 400 of an example of a method for creating subscriber groups. This flowchart and other flowcharts are depicted in the figures of this paper as serially arranged modules. However, modules of the flowcharts may be reordered or arranged for parallel execution as appropriate. In the example of FIG. 4 , the flowchart 400 starts at module 402 with creating a subscriber record. The term “record” as used in this paper can refer to a data structure of any applicable format saved in a data store. A subscriber record can include such information as device name, owner name, EID (e.g., IMSI or Country Code+Operator Code+MIN), device type, subscriber group, locale, phone number (e.g., MSISDN or MDN), operating system version, CDMA subscriber details (e.g., Device ID/MEID and/or MSID), and GSM/LTE subscriber details (e.g., IMSI and/or IMEI). Generally, more information will enable designers to group subscribers together in different ways (e.g., by demographic information), which can result in improved accept rates for targeted notifications. In the example of FIG. 4 , the flowchart 400 continues to module 404 with storing the subscriber record in a service design system subscriber datastore. Datastore is a general term that can be applied to almost any data storage receptacle. For the purpose of this example, however, a specific format is expected. It is possible, and even likely, that the service design system subscriber datastore (and the service design system subscriber group datastore, mentioned later) will have an implementation- and/or configuration-specific, though not necessarily proprietary, format. The subscriber record is expected to have such a format appropriate for storage in the expected format of the service design system subscriber datastore. In the event subscriber data is received in the service design system in a format other than the expected format, the subscriber record is created ( 402 ) in the expected format and populated with some or all of the received subscriber data, and potentially with additional data that is obtained by the service design system (e.g., from a datastore or through an admin or other input process). In the example of FIG. 4 , the flowchart 400 continues to decision point 406 where it is determined whether there is additional subscriber records to be created. If it is determined that there is additional subscriber records to be created ( 406 -Y), then the flowchart 400 returns to module 402 and continues as described previously for the next subscriber record. A “while loop” 408 comprising the modules 402 and 404 and decision point 406 is encompassed in the example of FIG. 4 with a dotted box. The while loop 408 can be executed in batch-mode by importing subscriber data from a data source. The format of the subscriber data can be restricted to the format of the service design system subscriber datastore or formats that a service design engine is capable of converting into the appropriate format. Alternatively or in addition, the while loop 408 can be executed through an input process one subscriber at a time, either when receiving data from a potential or current subscriber, or from an artificial or human agent of the service design system. If, on the other hand, it is determined that there are no additional subscriber records to be created ( 406 -N), then the flowchart 400 continues to module 410 with creating a subscriber group record from subscriber records in the service design system subscriber datastore. A subscriber group record may or may not have a substantial amount of metadata. For example, a subscriber group record can be assigned a name and description to make it easier to use the subscriber group record when creating service plans for subscriber groups. An alternative field of the subscriber group record is common subscriber data, though this could also be considered part of the description. In the example of FIG. 4 , the flowchart 400 continues to module 412 with storing the subscriber group record in the service design system subscriber group datastore. The issues related to format of subscriber group records are similar to those described previously with reference to module 404 . In the example of FIG. 4 , the flowchart 400 continues to decision point 414 where it is determined whether there is additional subscriber group records to be created. If it is determined that there is additional subscriber group records to be created ( 414 -Y), then the flowchart 400 returns to module 410 and continues as described previously for the next subscriber group record. A “while loop” 418 comprising the modules 410 and 412 and decision points 414 and 416 is encompassed in the example of FIG. 4 with a dotted box. The while loop 416 can be executed in batch-mode by importing subscriber records from the subscribers datastore. Alternatively or in addition, the while loop 418 can be executed through an input process one subscriber at a time, either when receiving data from a potential or current subscriber, or from an artificial or human agent of the service design system. For example, an admin could drag and drop available subscribers into a subscriber group, and the service design engine can create a subscriber group record from available subscribers that were added to the subscriber group in this way. In a specific implementation, a batch of subscriber data can be imported into the service design system and used to populate a subscriber group. It may be noted that the logical flow in the flowchart 400 is to create subscriber records ( 412 ) and store the subscriber records ( 404 ) repeatedly ( 406 ) and then create a subscriber group ( 410 ) from subscriber records in the service design system subscriber datastore. However, it is not necessary for the import procedure to create each subscriber record before creating the subscriber group. In a specific implementation, when a subscriber record with a characteristic that identifies the subscriber record as part of an existing subscriber group record is created and stored in the service design system subscriber datastore, that subscriber may or may not automatically be added to the existing subscriber group record (or an update procedure could add any subscriber records having the relevant characteristics that were not previously added to the subscriber group record when initiated by a subscriber or agent of the service design system). Referring once again to decision point 414 , if it is determined that there are no additional subscriber group records to be created ( 414 -N), then the flowchart 400 continues to decision point 416 where it is determined whether there are additional subscriber records to be created. If it is determined that additional subscriber records are to be created ( 416 -Y), then the flowchart 400 returns to module 402 and continues as described previously. If, on the other hand, it is determined that no additional subscriber records are to be created ( 416 -N), then the flowchart ends. It may be noted that in a typical implementation, the method could be restarted at module 402 or module 410 if there is an other subscriber record or another subscriber group record to be created. Therefore, the end is a logical end to the flowchart 400 , but the process can continue as needed. FIG. 5 depicts a flowchart of an example of a method for creating service plan components. In the example of FIG. 5 , the flowchart 500 starts at module 502 with creating a filter instance. A filter record is created by this action, but the term “instance” is used because of the way in which a filter is used in the system. Specifically, a filter can have global characteristics in the sense that if two service plan components incorporate the filter instance and the filter instance is later changed, the changes are applied to both of the service plan components. Thus, there is a single filter instance that is used in multiple components. Alternatively, a filter instance can be created from a template in the sense that if two service plan components incorporate the filter instance and a change is made to one of the filter instances, the changes are not applied to the other filter instance. Thus, each application of the filter template is a separate filter instance. In a specific implementation, filter instances can be explicitly set to be either global or local. It is also possible to create a global filter template (such that changes to the global filter template are applied to all instances of the filter) as well as local filter instances that can be changed within service plan components without the changes cascading through they system. In the example of FIG. 5 , the flowchart 500 continues to module 504 with storing the filter instance in a service design system filter datastore. The service design system filter datastore may have explicit data structure requirements for the filter instance, but will at least include a traffic instance that matches the filter. In a specific implementation, the traffic instances can include traffic events that include a specified remote destination (e.g., a domain or IP address), a specified application (identified by, e.g., name, hash, certificate, signature, other secure ID, etc.), a specified operating system, specified content, a specified protocol (e.g., TCP, UDP, TCP/UDP), or a specified port number. Domain filters can be specified to allow references to be loaded and/or to use associative filtering (e.g., by seconds or by bytes of data). Application filters can be specified to validate applications. Each filter instance stored in the service design system filter datastore can include a filter name and description to make use of the filter easier for human agents. In a specific implementation, filter instances can be specified to be match or no match filters. A “match” filter does not prevent attempts to match a traffic event to another filter. A “no match” filter prevents a network traffic inspection engine from attempting to match a traffic event to another filter. In a sense, this applies an action to a filter, and the match and no match aspect of a filter can be treated as a filter aspect or an associated action aspect, whichever is more applicable in a given context. In the example of FIG. 5 , the flowchart 500 continues to decision point 506 where it is determined whether there are more filter instances to create. If it is determined that there are more filter instances to create ( 506 -Y) then the flowchart 500 returns to module 502 and continues as described previously for a next filter instance. If, on the other hand, it is determined that there are no additional filter events to be created ( 506 -N), then the flowchart 500 continues to module 508 with creating a corresponding policy event rule record. The policy event rule enables a service plan component to determine what network state (including any network state) is applicable to a policy event. It may be noted that in a specific implementation, the rules can be created without a corresponding filter (e.g., as a stand-alone rule). The policy event rule becomes applicable when a filter matches a traffic event in a way that is specified by the rule. For example, if a traffic event matches a filter instance such that a network state is detected (e.g., in a network state, transitioning into the network state, or transitioning out of the network state), then a rule that specifies these conditions is applicable. Other examples of specified conditions are when a traffic event is allowed, blocked, throttled, delayed, or deferred, each which could be specified to be match or no match. Policy rules can also define caps, which are met when a count of, e.g., time or bytes, reaches the defined cap. (It may be noted that a count can be considered part of a notification policy.) When a capped policy event has a counter increment to its defined cap, the filter can change from, e.g., allow (when the cap has not been exceeded) to block, throttle, delay, or defer (when the cap has been exceeded). The capped policy event could similarly go from, e.g., throttle (when the cap has not been exceeded) to throttle more (when the cap has been exceeded) or some other combination of filtering activity before and after a cap has been exceeded. In the example of FIG. 5 , the flowchart 500 continues to module 510 with storing the corresponding policy event rule record in the design system rules datastore. Policy event rules records can include one or more of a traffic control policy, a notification policy, and a charging policy. Traffic control policy rules are associated with the type of filter to which the traffic control policy rule corresponds (e.g., allow, block, throttle, delay, defer, or take no action). The applicable traffic control can be function of network state, device state, service plan usage state, etc. Notification policy rules are associated with sending information to a party, such as a subscriber, human or non-human agent of a service design system, a program, etc. In a specific implementation, a notification policy record can be given a name and description, and notification details such as whether the notification is in the foreground or background, the destination of the notification (e.g., to a subscriber, to a server, or to some other party), and interaction that is enabled in association with the notification (e.g., number of times the notification is displayed before it is no longer displayed to a user or an option that enables a user to suppress the notification in the future). Notifications to subscribers and human agents of the service design system will typically include human-readable content, such as a title, subtitle, short text, and/or long text description. Notifications to non-human agents may or may not include the same information, and can include instruction sets that make little or no sense when read by a human. In a specific implementation, notifications can include variables that insert data from datastores, about network state, or other data that can vary over time. A service design agent can include selection options (e.g., buttons) in a notification that enable the recipient to provide feedback or instructions. Useful selection options might include, for example, upsell plans, a service offerings catalog, a request for more information, an indication that overage is desired, launching a URL, and/or dismiss. In a specific implementation, a service design system agent can use a graphical user interface that displays a mobile device with the notification as it would be displayed (perhaps without some icons or other features of the mobile device) to make review of the notification convenient. Charging policy rules are associated with determining how much to bill for usage (in time or bytes). In a specific implementation, a service plan component can inherit charging policy from a plan in which the component is integrated. So, strictly speaking, in such an implementation, a service plan component record need not have a charging policy rule, though when deployed it can have a charging policy rule due to inheritance. Where the charging policy is defined for a component, the charging policy can be based on data used or time, may or may not have an overage allowance (with an optional maximum overage usage), and will have a rate, which can be specified with a charging code. In the example of FIG. 5 , the flowchart 500 continues to module 512 with creating a service plan component record that includes the filter instance from the service design system filter datastore and the policy event rule record in the design system rules datastore. It may be observed that a service plan component will always have a filter and a policy event rule. Assuming the traffic control policy is defined to include “detect” (in addition to allow, block, throttle, delay, defer, to name several), the service plan component can be defined as always including a traffic control policy, where “detect” does nothing more than trigger the policy event when the filter and policy event rule matches a traffic event. Assuming the notification policy is defined to include “none,” the service plan component can be defined as always including a notification policy. Assuming the charging policy is defined to include “inherit,” the service plan component can be defined as always including a charging policy, which is determined when the component is integrated into a plan from which it can inherit the charging policy. In the example of FIG. 5 , the flowchart 500 continues to decision point 514 where it is determined whether more filter instances are to be created. If it is determined that more filter instances are to be created ( 514 -Y), then the flowchart returns to module 502 and continues as described previously (though at module 512 , instead of creating a service plan component record, the service plan component record can be modified). If, on the other hand, it is determined that no more filter instances are to be created ( 514 -N), then the flowchart 500 continues to decision point 516 where it is determined whether more policy event rule records corresponding to a filter record are to be created. If it is determined that more policy event rule records corresponding to a filter record are to be created ( 516 -Y), then the flowchart 500 returns to module 508 and continues as described previously (though at module 512 , instead of creating a service plan component record, the service plan component record can be modified). If, on the other hand, it is determined that no more policy event rule records corresponding to a filter record are to be created ( 516 -N), then the flowchart 500 ends. It may be noted that in a typical implementation, the method could be restarted at module 502 , module 508 , or module 512 if there is an other filter instance, policy event rule record, or service plan component record to be created. Therefore, the end is a logical end to the flowchart 500 , but the process can continue as needed. FIG. 6 depicts a flowchart 600 of an example of a method for creating service plans from service plan components. For illustrative purposes, it is assumed that filter instances, policy event rule records, and service plan component records that are going to be used in a service plan have already been created. It may be noted that none, some, or all of the filter instances, policy event rule records, and service plan component records could be created at any appropriate point (not depicted) in the flowchart 600 . In a specific implementation, the filter instances and policy event rule records can be used at both the service plan component level (see, e.g., FIG. 5 ) and at the service plan level. In the example of FIG. 6 , the flowchart 600 continues to module 610 with creating a service plan record. The service plan record can include an icon for display on, e.g., subscriber devices, a plan name, a plan short description, a plan description, a plan version, a plan type (e.g., sponsored, paid, or carrier), whether the plan is a default plan, whether the plan is repurchaseable, a billing price, and a display price. Whether a policy label is displayed on a subscriber device can also be set. It may be noted that the service plan record could instead be created after all or a portion of the information associated with the following modules has been provided. In the example of FIG. 6 , the flowchart 600 continues to module 604 with setting charging policy for the service plan. The charging policy can be based on data or time usage and can have a usage limit, with or without overage of some amount, the billing policy cycle can be configured as appropriate (e.g., duration, frequency, report usage, pre- or post-paid billing, etc.). Whether billing identifiers are used (e.g., billing name, carrier service ID, etc.) can also be set. If charging codes are used, charging codes can also be identified and set to the default or not as is appropriate for the service plan. The charging policy can be inherited by service plan components of the plan that are configured to inherit the charging policy of the plan. In the example of FIG. 6 , the flowchart 600 continues to module 606 with hierarchically arranging service plan components in the service plan. The hierarchical arrangement can be explicit (e.g., by indicating priority in a field associated with a component) or implicit in the ordering of the components. In a specific implementation, the components also have service classes. For example, components could fall into the service classes carrier, network protection, sponsored, paid, parental control, marketing intercept, open access/bulk, post-bulk, and no applicable service plan/end-of-life. Thus, hierarchical arrangement of service plan components can refer to hierarchical arrangement of the service plan components relative to one another, to hierarchical arrangement of the service plan components within a service class relative to other service plan components in that service class, or to both. Depending upon the implementation, service plan components can be designated to have a service class upon creation (or edit), or the component can be assigned to a service class when the component is added to the service plan. For example, a service plan component could be assigned to a “paid” service class, but could also function appropriately if assigned to a marketing intercept service class. Depending upon the implementation, the component could be designated “paid” upon creation and copied to create a similar “marketing intercept” component, or the component could be designated either paid or marketing intercept upon creation (or have no service class designation), and inserted into the relevant service class when arranged in a service plan. Thus, the hierarchical arrangement can be dynamic by service class (e.g., a designer can pick the class into which to arrange a component) or static by service class (e.g., the component is created within a service class). In a specific implementation, a service plan component with a static service class can be explicitly arranged by priority relative to other service plan components within the service class, a service plan component with a dynamically assigned service class can be explicitly arranged by priority relative to other service plan components within the service class, a service plan component with a static service class can be implicitly arranged by priority within the service class, and a service plan component with a dynamically assigned service class can be implicitly arranged by priority within the service class. In the examples provided in this paper, the carrier service class is generally treated as the highest priority service class. Carrier plans will include basic network policy. In a specific implementation, carrier plans are automatically enforced on a subscriber device and are not offered in a plan catalog. In the examples provided in this paper, the second highest priority service class, network protection, can be associated with policy designed to protect network resources (e.g., by detecting devices that are consuming too many network resources and throttling or blocking them). Network protection services can have variable billing policies that are selectable by a subscriber (e.g., to enable foreground processing as opposed to background processing, speed, etc.), but a subscriber may or may not have the ability to modify network protection policy, depending upon the implementation. In the examples provided in this paper, the third highest priority service class, sponsored, can be associated with service plans that are sponsored in whole or in part by an entity other than the subscriber. Partially sponsored plans can be referred to as subsidized, though the term “sponsored” is intended to include subsidized plans unless otherwise indicated by context. Depending upon the implementation and/or configuration, sponsored plans may or may not be optional. For example, an employee of a company may have a sponsored service plan that is applicable when the employee accesses the company intranet, and the employee may or may not be able to decline the sponsorship. As another example, Facebook may subsidize network resource consumption when a subscriber accesses the Facebook website, and the subscriber may or may not be able to decline the subsidy. In the examples provided in this paper, the fourth highest priority service class, paid, can be associated with service plans that a subscriber purchases. It is generally the case that a subscriber will be given the option to purchase a paid service plan through, e.g., an actionable service offer. (An actionable service offer is a notification that includes a feedback mechanism, such as an accept button, that a subscriber can select to accept the service offer.) Service offers can be triggered by predefined conditions, such as when a subscriber attempts to do something that a plan would help. (Service offers can also be triggered for sponsored services.) In the examples provided in this paper, the fifth highest priority service class, parental control, can be associated with service plans that a subscriber purchases or modifies in accordance with an authentication process. Parental control plans can be associated with multi- (or single-) device plans for which a primary subscriber can set policy. Depending upon the implementation, different devices of a multi-device plan can also have different sponsored and paid plans. In the examples provided in this paper, the sixth highest priority service class, market interceptor, can be associated with service plans that are offered to a subscriber before the subscriber drops to the bulk policy service class. Market interceptor plans can include service offers that are favorable to open access policy in some way. In the examples provided in this paper, the seventh highest priority service class, open access or bulk, can be associated with a catch-all service plan. In the examples provided in this paper, the eighth highest priority service class, post-bulk, can be associated with service plans that can be activated in the event no other service plan is applicable. In a specific implementation, post-bulk plans are designed to offer a subscriber a last chance to activate a service plan for something that the subscriber is trying to do, but is unable due to no service plan being available. If the subscriber responds appropriately to a notification, the subscriber may activate a service plan (e.g., a paid service plan) relevant to a present activity. In the examples provided in this paper, the ninth highest priority service class, end-of-life, is typically associated with a notification that no service plan is available for a detected traffic event. It is not necessary to utilize all service classes to take advantage of a service class hierarchy in specific implementations. It is also possible to move a class up or down relative to other classes in the hierarchy. For example, the network protection class could be given a priority below paid service class. In the example of FIG. 6 , the flowchart 600 continues to module 608 with setting a plan-level policy event associated with a network state. As was described previously, each service plan component can have a traffic control policy, a notification policy, and a charging policy. Policy events can also be set at the plan level. In a specific implementation, the filters and rules that were created when creating service plan components can be reused at the plan level, and if filters and rules are created when creating the service plan (not depicted), then those filters and rules can, be used at the service plan component level. In a specific implementation, the policy events can be associated with a network state. Network state can refer to current or historical parameters (e.g., congestion, previous number of failed attempts to authenticate on the network, time of day, geographic location, type of network, device is roaming, etc.) Policy events can also be set to be applicable for any (i.e., regardless of) network state. In the example of FIG. 6 , the flowchart 600 ends at module 612 with storing the service plan record in a service design system service plan datastore. Advantageously, the service plan can be used in multiple service plan catalogs without modification. Alternatively, the service plan record could be cloned for use in various service plan catalogs with or without modification. Where versioning is used, deployed service plans can either be automatically updated to new versions (with a possible grandfathering-in of subscribers to service plan components from prior versions), or the service plans can be wholly or partially templated such that new versions of the service plan do not impact deployed service plan offerings. Depending upon the implementation, a designer can go back to any module to edit parameters (e.g., after reviewing the service plan and determining that a parameter should be changed). A service design engine can use a process, such as the example provided with reference to FIG. 4 , to create subscriber groups. The service design engine can also use a process, such as the example provided with reference to FIG. 6 , to create service plans. The subscriber groups and service plans can be implemented in service plan catalogs that are provided to access networks for automatic or selective implementation. FIG. 7 depicts a flowchart 700 of an example of a method for creating service plan catalogs from subscriber groups and service plans. In the example of FIG. 7 , the flowchart 700 starts at module 702 with creating a service plan catalog record. The service plan catalog record can include a plan catalog name, a plan catalog description, a plan catalog version, or the like. It may be noted that the service plan catalog record could instead be created after all or a portion of the information associated with the following modules has been provided. In the example of FIG. 7 , the flowchart 700 continues to module 704 with adding plans to the service plan catalog record. In a specific implementation, the plans are stored as records in a service design system service plans datastore. In a specific implementation, the plans are represented in a list, and a designer can drag plans from the list into a chosen plans list using a service design system UI. Plans can be designated as available upon activation (or not). In the example of FIG. 7 , the flowchart 700 continues to module 706 with hierarchically arranging the service plans in the service plan catalog record. The plans can be arranged by priority relative to one another, which results in a higher priority plan being displayed and/or used first. The plans can also be arranged within a service class relative to other plans in the service class. Service class can be statically assigned to the plans when they are created (or edited) or dynamically assigned during the creation of the service plan catalog. Priorities can be explicit based on a priority indicator, implicit based on a relative location of a plan in the list of plans, or indicated in some other manner. In a specific implementation, a service design system UI enables a designer to drag a plan up or down a list of plans within service classes to establish priority, which is indicated by a priority number that corresponds to the relative order of a plan within a service class. In the example of FIG. 7 , the flowchart 700 continues to module 708 with optionally arranging plans within tabs for display with a service plan catalog offering. Tabs can include categories such as games, social, productivity, media, free, paid, all, or the like. An association between a tab and a plan can be formed such that the plan will be displayed under the associated tab when the service plan catalog offering is displayed, e.g., on a subscriber device. A plan can be associated with multiple tabs, and displayed under the multiple tabs. The order of the tabs can be configured, as can the order of the plans within tabs. In this paper, the order of the plans within a tab is not related to the priority of a plan, e.g., within a service class, though such a correlation could be made in alternative implementations. In the example of FIG. 7 , the flowchart 700 continues to module 710 with adding subscriber groups to the service plan catalog record. In a specific implementation, the subscriber groups are represented in a list, and a designer can drag plans from the list into a chosen subscriber groups list using a service design system UI. Other methods of adding subscriber groups are anticipated, such as, e.g., by identifying subscriber groups in accordance with subscriber characteristics. When a service plan catalog is published, the subscriber groups associated with service plans in the service plan catalog identify the subscribers, whether automatically or by selecting the plan, that will have the policies of the relevant service plan enforced on their devices. Depending upon the implementation, publication of a plan can be in beta, which generally means the subscribers to the plan can have the plan changed with or without notice, or deployed, which generally means that subscribers can expect changes to future versions of the plan will not impact them until they need to repurchase the (new version of) the plan. In the example of FIG. 7 , the flowchart 700 continues to module 712 with configuring upsell offers. Upsell offers have notification policy that is associated with network state, device state, or subscriber state. For example, if a subscriber uses a great deal of streaming media in a bulk plan, it may be desirable to offer a streaming media plan that, based upon their current or historical usage, will save the subscriber money. As another example, a subscriber who is in a city with a wireless Municipal Area Network (MAN) might receive upsell offers associated with a using the wireless MAN. As another example, a subscriber who frequently accesses Facebook can be offered a service plan that is sponsored by Facebook, thereby decreasing service costs as long as the access is associated with Facebook. As another example, a subscriber who frequently accesses a Facebook competitor could be offered a service plan that is sponsored by Facebook in an effort to draw the subscriber to Facebook (because it is cheaper). As another example, if a subscriber is indicated to have a language preference of Japanese, an upsell offer could target that demographic (e.g., by offering a sponsored service to access an application that is popular among Japanese speakers). As another example, a subscriber who has a particular device state (e.g., the subscriber record includes data that the subscriber uses an iPhone) can be targeted with an upsell offer that is popular with subscribers having such a device state. Upsell offers can include a suite of all possible choices, or can be limited to offers that are more suitable to the specific historical usage of a particular subscriber. For example, if a subscriber typically consumes around 5 MB of data per unit of time, the system need not provide upsell offers for 10 MB, 100 MB, 1 GB, 10 GB, and 100 GB all at once (even though all might be offered), and instead send an upsell offer of 10 MB only (or, e.g., 10 MB and 100 MB). If usage for the subscriber increases, the subscriber can be notified regarding the larger-size service plans. The upsell offer could alternatively be added to a service plan component, but in a specific implementation, it was deemed useful to modify upsell offers, even those that might be identified within a service plan component, at the service plan catalog level. In this way, standard upsell components of, e.g., a Facebook plan, can be modified with appropriate notification or other configurations for a given service plan catalog or for specific subscriber groups. In the example of FIG. 7 , the flowchart 700 ends at module 714 with setting LCP error policy. An LCP error occurs when a traffic event is not matched to an applicable service plan policy. Setting an LCP error for a service plan catalog enables the LCP error to be handled in an elegant fashion (e.g., by sending a notification to a subscriber that the traffic event can be handled in accordance with an inactive service plan, the notification including an option for the subscriber to activate the inactive service plan). The LCP error notification policy could alternatively be added to a service plan component, but in a specific implementation, it was deemed useful to enable LCP error policy settings at the service plan catalog level because the LCP error policy always comes at the end of attempts to match all active plans in a service plan catalog offering. This results in improved service plan design efficiency. Depending upon the implementation, a designer can go back to any module to edit parameters (e.g., after reviewing the service plan catalog and determining that a parameter should be changed). FIG. 8 depicts an example of system 800 including an access network and a network service plan provisioning sandbox system. The system 800 includes an access network 802 and a network service plan provisioning system 804 . The access network 802 is similar to that described with reference to FIG. 1 . In the example of FIG. 8 , the network service plan provisioning system 804 includes a service design center 806 and a service design sandbox 808 . Conceptually, the service design center 806 and the service design sandbox 808 share design and/or provisioning responsibilities. The service design center 806 and the service design sandbox 808 can be hierarchically organized. For example, the service design center 806 can delegate certain roles to the service design sandbox 808 and perhaps retains an oversight capability for agents of the service design center 806 . For example, the service design sandbox 808 can be given the ability to impact policy control to a subset of subscriber groups of the network service plan provisioning system 804 . The network service plan provisioning system 804 can be referred to as “distributed” in this example. Some examples of entities that might desire to include the service design sandbox 808 in their networks include enterprises with employees that consume network services, MVNOs, application developers, gifters, and community-based organizations. In the case of enterprises with employees that consume network services, the service design sandbox 808 can enable fine-tuned control over traffic control and charging policy (as well as notification policy). Assume that XYZ company controls the service design sandbox 808 . XYZ company can create a service plan specific to XYZ company network services on the XYZ company intranet, which will be referred to as the XYZ plan. Specifically, the XYZ company can sponsor the XYZ company network services on the XYZ company intranet for XYZ company employees. A paid plan offered by a carrier that controls the service design center 806 , for example, can still be available for XYZ company employees that are using other network services (or XYZ company could partially sponsor a subset of the other network services). The XYZ plan could also include a component that prevents XYZ company employees from accessing certain restricted sites through the XYZ company intranet and has notification policy associated with the attempted access. Continuing the example, an agent (e.g., IT manager) of the XYZ company can define subscriber groups that comprise XYZ company members and assign different service plans (e.g., different traffic control, notification, or charging policies) to the different XYZ company subscriber groups. For example, employees could get limited usage, managers might get access to more usage and additional services (e.g., email), members of the sales team might get better roaming services, and a CEO might get everything in the carrier's service plan offering, perhaps with XYZ company as a sponsor for all services. Advantageously, split-billing is possible using these techniques, such that XYZ company can pay for sponsored services and XYZ employees can pay for unsponsored services (or for a portion of subsidized services). In the case of MVNOs, an MVNO can purchase bulk data from a carrier and offer plans based on the bulk. Advantageously for MVNOs, the service design sandbox 808 enables control over subscribers based on, e.g., network state. Indeed, for all subscribers “owned” by the MVNO, a great deal of policy control can be applied (dependent upon the amount of control a carrier is willing to give to the MVNO). Other providers that can benefit from the sandbox model include mobile virtual network enablers (MVNEs), mobile shared spectrum enablers (MSSEs), and service providers (SPs). In the case of application developers, the service design sandbox 808 can specify applications that can be covered by a service plan. The service design center 806 may or may not be responsible for creating the underlying control mechanism. For example, a company like amazon.com can be given some control over sponsorship settings for applications associated with amazon.com. In the case of gifters, the service design sandbox 808 can enable specification of a sponsorship amount that is donated to some other organization, such as a non-profit organization. In the case of community-based organizations, the service design sandbox 808 can specify free access for a particular network service. For example, the San Francisco Giants organization could have a plan group for fans that grants free access to the official site of the San Francisco Giants. As another example, AAA could sponsor access to services for AAA members. Agents of the network service plan provisioning system can be given roles that grant access to certain aspects of service design and/or provisioning. For example, agents at the service design center 806 can have a role system administrator, super user, or the like, while agents of the service design sandbox 808 can have roles such as enterprise IT manager, MVNO administrator, or the like. Agents of the service design sandbox 808 can subdivide roles further, if applicable, depending upon implementation. FIG. 9 depicts a conceptual diagram 900 of an example of a service design system sandbox implementation. The conceptual diagram 900 includes a carrier network 902 , existing network, IT, and billing infrastructure 904 (referred to as infrastructure 904 ), the Internet 906 , a service processor 908 , a service controller 910 , an operator service design center (SDC) 912 , and a partner SDC sandbox 914 . In the example of FIG. 9 , the carrier network is coupled to the Internet 906 via the infrastructure 904 . The service processor 908 can be implemented on a client device on the carrier network 902 . In a specific implementation, the service processor 908 includes a service control device link. For example, as device based service control techniques involving supervision across a network become more sophisticated, it becomes increasingly important to have an efficient and flexible control plane communication link between the device agents and the network elements communicating with, controlling, monitoring, or verifying service policy. In some embodiments, the service control device link provides the device side of a system for transmission and reception of service agent to/from network element functions. In some embodiments, the traffic efficiency of this link is enhanced by buffering and framing multiple agent messages in the transmissions. In some embodiments, the traffic efficiency is further improved by controlling the transmission frequency or linking the transmission frequency to the rate of service usage or traffic usage. In some embodiments, one or more levels of security or encryption are used to make the link robust to discovery, eavesdropping or compromise. In some embodiments, the service control device link also provides the communications link and heartbeat timing for the agent heartbeat function. The service control device link can provide an efficient and secure solution for transmitting and receiving service policy implementation, control, monitoring and verification information with other network elements. In a specific implementation, a client dashboard is presented in a display device by the service processor 908 . The client dashboard can include the following menus: services (purchased, data usage), statistics (applications consuming data, data used in absolute terms or as a %), buy (navigates subscriber through activation, enrollment, plan selection, and purchase workflows), help, and settings (preferences, e.g., language). The service controller 910 can be implemented, e.g., in the cloud, and is coupled to the infrastructure 904 . The operator SDC 912 is on the Internet, and is coupled to the service controller. The operator SDC 912 can set up boundaries for “sandboxed” service and allow customizations for partner sets; lock in master tariffs based on negotiated rates for a given partner set or individual partner; create custom log-ins for different partner sets or individual partners; and carry out any applicable techniques appropriate for a service design system. The operator SDC 912 allows authorized agents to manage service plan components and subscribers. The agents can manage groups (collections of subscribers, SIMs, or devices) to create groups and group directories, assign an identity hierarchy for the operator, associated identifiers with groups, etc. The agents can manage service plans (including one or more components) including plan name and description, groups using the plan, service plan components, service activities, network busy states and connection types, charging policies (including usage limits, thresholds, frequency, time, and payment type), notifications (e.g., for plan usage thresholds, plan cap, expiration, block, overage, no capable plan, etc.), and events (e.g., for plan usage thresholds, plan cap, expiration, block, overage, etc.). The agents can manage service components (logical grouping of one or more filters and rules), including component name and description, plans using the component, network busy states and connection types, charging policies (including usage limits, thresholds, frequency, time and payment type), notifications (e.g., for plan usage thresholds, plan cap, expiration, block, overage, no capable plan, etc.), and events (e.g., for plan usage thresholds, plan cap, expiration, block, overage, etc.). The agents can manage service activities (e.g., activity name, plans using the activity, components using the activity, filter name and description, and filter type details (e.g., operating system, application, remote, port, protocol, etc.). The agents can manage service group plans including assign and publish plan group, create activation workflow screens, create buy workflow screens. The agents can receive, manage, customize, or generate reports for, for example, usage reports by destination for a subscriber over a period of time, usage reports by destination for a range of subscribers over a period of time (top destinations). The partner SDC sandbox 914 is coupled to the operator SDC 912 in an applicable convenient fashion. The partner SDC sandbox 914 can provide a secure login environment in which a subset of SDC service management controls can be designed and/or used; enable selection from bounded service customization options for one or more device groups under management; customize device UI branding; access real time analytics for service usage, application usage, location, etc.; set up service usage alerts, fraud alerts, theft alerts, etc.; and carry out any applicable techniques appropriate for a service design system that have been delegated to the sandboxed environment. The service controller 910 includes a service control server link. In some a specific implementation, device based service control techniques involving supervision across a network (e.g., on the control plane) are more sophisticated, and for such it is increasingly important to have an efficient and flexible control plane communication link between the device agents (e.g., of the service processor 908 ) and the network elements (e.g., of the service controller 910 ) communicating with, controlling, monitoring, or verifying service policy. For example, the communication link between the service control server link of service controller 910 and the service control device link of the service processor 910 can provide an efficient and flexible control plane communication link, a service control link; in some embodiments, this control plane communication link provides for a secure (e.g., encrypted) communications link for providing secure, bidirectional communications between the service processor 908 and the service controller 910 . In some embodiments, the service control server link provides the network side of a system for transmission and reception of service agent to/from network element functions. In some embodiments, the traffic efficiency of this link is enhanced by buffering and framing multiple agent messages in the transmissions (e.g., thereby reducing network chatter). In some embodiments, the traffic efficiency is further improved by controlling the transmission frequency and/or linking the transmission frequency to the rate of service usage or traffic usage. In some embodiments, one or more levels of security and/or encryption are used to secure the link against potential discovery, eavesdropping or compromise of communications on the link. In some embodiments, the service control server link also provides the communications link and heartbeat timing for the agent heartbeat function. In some embodiments, the service control server link provides for securing, signing, encrypting and/or otherwise protecting the communications before sending such communications over the service control link. For example, the service control server link can send to the transport layer or directly to the link layer for transmission. In another example, the service control server link further secures the communications with transport layer encryption, such as TCP TLS or another secure transport layer protocol. As another example, the service control server link can encrypt at the link layer, such as using IPSEC, various possible VPN services, other forms of IP layer encryption and/or another link layer encryption technique. In a specific implementation, the service controller 910 can include an access control integrity server (e.g., service policy security server). In some embodiments, the access control integrity server collects device information on service policy, service usage, agent configuration, and/or agent behavior. For example, the access control integrity server can cross check this information to identify integrity breaches in the service policy implementation and control system. In another example, the access control integrity server can initiate action when a service policy violation (e.g., QoS policy violation and/or a network capacity controlled services policy violation) or a system integrity breach is suspected. In a specific implementation, an agent of the service controller 910 (and/or some other agent of the access control integrity server) acts on access control integrity agent (e.g., service policy security agent) reports and error conditions. Many of the access control integrity agent checks can be accomplished by the server. For example, the access control integrity agent checks include one or more of the following: service usage measure against usage range consistent with policies (e.g., usage measure from the network and/or from the device); configuration of agents; operation of the agents; and/or dynamic agent download. In a specific implementation, an agent of the service controller 910 (and/or some other agent of the access control integrity server) verifies device service policy implementations by comparing various service usage measures (e.g., based on network monitored information, such as by using IPDRs or CDRs, and/or local service usage monitoring information) against expected service usage behavior given the policies that are intended to be in place (e.g., a QoS policy and/or a network capacity controlled services policy). For example, device service policy implementations can include measuring total QoS data passed, QoS data passed in a period of time, IP addresses, data per IP address, and/or other measures such as location, downloads, email accessed, URLs, and comparing such measures expected service usage behavior given the policies that are intended to be in place. In a specific implementation, an agent of the service controller 910 (and/or some other agent of the access control integrity server) verifies device service policy, and the verification error conditions that can indicate a mismatch in QoS service measure and QoS service policy include one or more of the following: unauthorized network access (e.g., access beyond ambient service policy limits); unauthorized network speed (e.g., average speed beyond service policy limit); network data amount does not match QoS policy limit (e.g., device not stop at limit without re-up/revising service policy); unauthorized network address; unauthorized service usage (e.g., VOIP, email, and/or web browsing); unauthorized application usage (e.g., email, VOIP, email, and/or web); service usage rate too high for plan, and policy controller not controlling/throttling it down; and/or any other mismatch in service measure and service policy. Accordingly, in some embodiments, an agent of the service controller 910 (and/or some other agent of the access control integrity server) provides a policy/service control integrity service to continually (e.g., periodically and/or based on trigger events) verify that the service control of the device has not been compromised and/or is not behaving out of policy (e.g., a QoS policy and/or a network capacity controlled services policy). In a specific implementation, the service controller 910 includes a service history server (e.g., charging server). In some embodiments, the service history server collects and records service usage or service activity reports from, e.g., an access network AAA server and/or a service monitor agent of the service controller 910 . For example, although service usage history from the network elements can in certain embodiments be less detailed than service history from the device, the service history from the network can provide a valuable source for verification of device service policy implementation, because, for example, it is extremely difficult for a device error or compromise event on the device to compromise the network based equipment and software. For example, service history reports from the device can include various service tracking information, as similarly described above. In some embodiments, the service history server provides the service history on request to other agents of the service controller 910 , other servers, and/or one or more other agents. In some embodiments, the service history server provides the service usage history to the device service history (e.g., CDR feed and CDR mediation). In some embodiments, for purposes of facilitating the activation tracking service functions (described below), the service history server maintains a history of which networks the device has connected to. For example, this network activity summary can include a summary of the networks accessed, activity versus time per connection, and/or traffic versus time per connection. As another example, this activity summary can further be analyzed or reported to estimate the type of service plan associated with the traffic activity for the purpose of bill sharing reconciliation. In a specific implementation, the service controller 910 includes a policy management server (e.g., policy decision point (PDP) server) for managing service usage policies, such as QoS policies and/or a network capacity controlled services policies. In some embodiments, the policy management server transmits policies to the service processor 908 via the service control link. In some embodiments, the policy management server manages policy settings on the device (e.g., various policy settings as described herein with respect to various embodiments) in accordance with a device service profile. In some embodiments, the policy management server sets instantaneous policies on policy implementation agents (e.g., policy implementation agent). For example, the policy management server can issue policy settings, monitor service usage and, if necessary, modify policy settings. For example, in the case of a user who prefers for the network to manage their service usage costs, or in the case of any adaptive policy management needs, the policy management server can maintain a relatively high frequency of communication with the device to collect traffic and/or service measures and issue new policy settings. In this example, device monitored service measures and any user service policy preference changes are reported, periodically and/or based on various triggers/events/requests, to the policy management server. In this example, user privacy settings generally require secure communication with the network (e.g., a secure service control link), such as with the policy management server, to ensure that various aspects of user privacy are properly maintained during such configuration requests/policy settings transmitted over the network. For example, information can be compartmentalized to service policy management and not communicated to other databases used for CRM for maintaining user privacy. In some embodiments, the policy management server provides adaptive policy management on the device. For example, the policy management server can issue policy settings and objectives and rely on the device based policy management (e.g., service processor 908 ) for some or all of the policy adaptation. This approach can require less interaction with the device thereby reducing network chatter on the service control link for purposes of device policy management (e.g., network chatter is reduced relative to various server/network based policy management approaches described above). This approach can also provide robust user privacy embodiments by allowing the user to configure the device policy for user privacy preferences/settings so that, for example, sensitive information (e.g., geo-location data, website history, and/or other sensitive information) is not communicated to the network without the user's approval. In some embodiments, the policy management server adjusts service policy based on time of day. In some embodiments, the policy management server receives, requests, and/or otherwise obtains a measure of network availability/capacity and adjusts traffic shaping policy and/or other policy settings based on available network availability/capacity (e.g., a network busy state). In a specific implementation, the service controller 910 includes a network traffic analysis server. In some embodiments, the network traffic analysis server collects/receives service usage history for devices and/or groups of devices and analyzes the service usage. In some embodiments, the network traffic analysis server presents service usage statistics in various formats to identify improvements in network service quality and/or service profitability. In some embodiments, the network traffic analysis server estimates the service quality and/or service usage for the network under variable settings on potential service policies. In some embodiments, the network traffic analysis server identifies actual or potential service behaviors by one or more devices that are causing problems for overall network service quality or service cost. In some embodiments, the network traffic analysis server estimates the network availability/capacity for the network under variable settings on potential service policies. In some embodiments, the network traffic analysis server identifies actual or potential service behaviors by one or more devices that are impacting and/or causing problems for overall network availability/capacity. In a specific implementation, the service controller 910 includes a beta test server (e.g., policy creation point and beta test server). In some embodiments, the beta test server publishes candidate service plan policy settings to one or more devices. In some embodiments, the beta test server provides summary reports of network service usage or user feedback information for one or more candidate service plan policy settings. In some embodiments, the beta test server provides a mechanism to compare the beta test results for different candidate service plan policy settings or select the optimum candidates for further policy settings optimization, such as for protecting network capacity. In a specific implementation, the service controller 910 includes a service download control server (e.g., a service software download control server). In some embodiments, the service download control server provides a download function to install and/or update service software elements (e.g., the service processor 908 and/or agents/components of the service processor 908 ) on the device, as described herein. In a specific implementation, the service controller 910 includes a billing event server (e.g., micro-CDR server). In some embodiments, the billing event server collects billing events, provides service plan information to the service processor 908 , provides service usage updates to the service processor 908 , serves as interface between device and central billing server, and/or provides trusted third party function for certain ecommerce billing transactions. In a specific implementation, the service processor 908 provides an additional layer of access control. For example, an access network AAA server can provide necessary access network AAA services (e.g., access control and authorization functions for the device access layer) to allow the devices onto the central provider access network and the service provider network. In some embodiments, another layer of access control is required for the device to gain access to other networks, such as the Internet, a corporate network and/or a machine to machine network. In some embodiments, the Access Network AAA server also provides the ability to suspend service for a device and resume service for a device based on communications received from the service controller 910 . In some embodiments, the Access Network AAA server also provides the ability to direct routing for device traffic to a quarantine network or to restrict or limit network access when a device quarantine condition is invoked. In some embodiments, the Access Network AAA server also records and reports device network service usage. In some embodiments, different profiles are selected based on the selected network connection (e.g., different service profiles/policies for WWAN, WLAN, WPAN, Ethernet and/or DSL network connections), which can be referred to as multimode profile setting. For example, service profile settings can be based on the actual access network (e.g., home DSL/cable or work network) behind the Wi-Fi not the fact that it is Wi-Fi (e.g., or any other network, such as DSL/cable, satellite, or T-1), which is viewed as different than accessing a Wi-Fi network at the coffee shop. For example, in a Wi-Fi hotspot situation in which there are a significant number of users on a DSL or T-1 backhaul, the service controller can sit in a service provider cloud or an MVNO cloud, the service controls can be provided by a VSP capability offered by the service provider or the service controller 910 can be owned by the hotspot service provider that uses the service controller 910 on their own without any association with an access network service provider. For example, the service processor 908 can be controlled by the service controller 910 to divide up the available bandwidth at the hotspot according to QoS or user sharing rules (e.g., with some users having higher differentiated priority (e.g., potentially for higher service payments) than other users). As another example, ambient services (e.g., as similarly described herein) can be provided for the hotspot for verified service processors. In some embodiments, the service processor 908 and service controller 910 are capable of assigning multiple service profiles associated with multiple service plans that the user chooses individually or in combination as a package. For example, a device starts with ambient services that include free transaction services wherein the user pays for transactions or events rather than the basic service (e.g., a news service, eReader, PND service, pay as you go session Internet) in which each service is supported with a bill by account capability to correctly account for any subsidized partner billing to provide the transaction services (e.g., Barnes and Noble may pay for the eReader service and offer a revenue share to the service provider for any book or magazine transactions purchased from the device). In some embodiments, the bill by account service can also track the transactions and, in some embodiments, advertisements for the purpose of revenue sharing, all using the service monitoring capabilities disclosed herein. After initiating services with the free ambient service discussed above, the user may later choose a post-pay monthly Internet, email, and SMS service. In this case, the service controller 910 would obtain from the billing system in the case of network based billing (e.g., or the service controller 910 billing event server in the case of device based billing) the billing plan code for the new Internet, email and SMS service. In some embodiments, this code is cross referenced in a database (e.g., the policy management server) to find the appropriate service profile for the new service in combination with the initial ambient service. The new superset service profile is then applied so that the user maintains free access to the ambient services, and the billing partners continue to subsidize those services, the user also gets access to Internet services and may choose the service control profile (e.g., from one of the embodiments disclosed herein). The superset profile is the profile that provides the combined capabilities of two or more service profiles when the profiles are applied to the same device service processor. In some embodiments, the service processor 908 can determine the superset profile rather than the service controller 910 when more than one “stackable” service is selected by the user or otherwise applied to the device. The flexibility of the service processor 908 and service controller 910 embodiments described herein allow for a large variety of service profiles to be defined and applied individually or as a superset to achieve the desired device service features. In some embodiments, device assisted services (DAS) techniques for providing an activity map for classifying or categorizing service usage activities to associate various monitored activities (e.g., by URL, by network domain, by website, by network traffic type, by application or application type, and/or any other service usage activity categorization/classification) with associated IP addresses are provided. In some embodiments, a policy control agent, service monitor agent (e.g., charging agent), or another agent or function (or combinations thereof) of the service processor 908 provides a DAS activity map. In some embodiments, a policy control agent, service monitor agent, or another agent or function (or combinations thereof) of the service processor provides an activity map for classifying or categorizing service usage activities to associate various monitored activities (e.g., by Uniform Resource Locator (URL), by network domain, by website, by network traffic type, by socket (such as by IP address, protocol, and/or port), by socket id (such as port address/number), by port number, by content type, by application or application type, and/or any other service usage activity classification/categorization) with associated IP addresses and/or other criteria/measures. In some embodiments, a policy control agent, service monitor agent, or another agent or function (or combinations thereof) of the service processor determines the associated IP addresses for monitored service usage activities using various techniques to snoop the DNS request(s) (e.g., by performing such snooping techniques on the device 100 the associated IP addresses can be determined without the need for a network request for a reverse DNS lookup). In some embodiments, a policy control agent, service monitor agent, or another agent or function (or combinations thereof) of the service processor records and reports IP addresses or includes a DNS lookup function to report IP addresses or IP addresses and associated URLs for monitored service usage activities. For example, a policy control agent, service monitor agent, or another agent or function (or combinations thereof) of the service processor can determine the associated IP addresses for monitored service usage activities using various techniques to perform a DNS lookup function (e.g., using a local DNS cache on the monitored device). In some embodiments, one or more of these techniques are used to dynamically build and maintain a DAS activity map that maps, for example, URLs to IP addresses, applications to IP addresses, content types to IP addresses, and/or any other categorization/classification to IP addresses as applicable. In some embodiments, the DAS activity map is used for various DAS traffic control and/or throttling techniques as described herein with respect to various embodiments for providing QoS for DAS and/or for providing DAS for protecting network capacity. In some embodiments, the DAS activity map is used to provide the user various UI related information and notification techniques related to service usage as described herein with respect to various embodiments. In some embodiments, the DAS activity map is used to provide service usage monitoring, prediction/estimation of future service usage, service usage billing (e.g., bill by account and/or any other service usage/billing categorization techniques), DAS techniques for ambient services usage monitoring, DAS techniques for generating micro-CDRs, and/or any of the various other DAS related techniques as described herein with respect to various embodiments. FIG. 10 depicts a conceptual diagram 1000 of an example of a service design system sandbox implementation. The components of FIG. 10 are similar to those depicted in FIG. 9 . FIG. 10 is intended to illustrate that various sandboxes can be created for a variety of purposes. In the example of FIG. 10 , the sandboxes 1014 include sponsored apps & websites sandboxes 1014 - 1 , enterprise IT manager sandboxes 1014 - 2 , machine-to-machine (M2M) & virtual service provider (VSP) (MVNO) partner sandboxes 1014 - 3 , device OEM & media provider sandboxes 1014 - 4 , parental control & multi-device sandboxes 1014 - 5 , etc. A common service controller cloud service software implemented at the service controller 1010 and server processor device client software implemented at the service processor 1008 allows operators and partners to scale customized user experiences and service plan policies. In some embodiments, a network service usage control policy is dynamic based on one or more of the following: a network busy state, a time of day, which network the service activity is connected to, which base station or communication channel the service activity is connected to, a user input, a user preference selection, an associated service plan, a service plan change, an application behavior, a messaging layer behavior, random back off, a power state of device, a device usage state, a time based criteria (e.g., time/day/week/month, hold/delay/defer for future time slot, hold/delay/defer for scheduled time slot, and/or hold/delay/defer until a busy state/availability state/QoS state is achieved), monitoring of user interaction with the service activity, monitoring of user interaction with the device, the state of UI priority for the service activity, monitoring the power consumption behavior of the service activity, modem power cycling or power control state changes, modem communication session set up or tear down, and/or a policy update/modification/change from the network. In some embodiments, the network service usage control policy is based on updated service usage behavior analysis of the network service usage activity. In some embodiments, the network service usage control policy is based on updated activity behavior response to a network capacity controlled service classification. In some embodiments, the network service usage control policy is based on updated user input/preferences (e.g., related to policies/controls for network capacity controlled services). In some embodiments, the network service usage control policy is based on updates to service plan status. In some embodiments, the network service usage control policy is based on updates to service plan policies. In some embodiments, the network service usage control policy is based on availability of alternative networks. In some embodiments, the network service usage control policy is based on policy rules for selecting alternative networks. In some embodiments, the network service usage control policy is based on network busy state or availability state for alternative networks. In some embodiments, the network service usage control policy is based on specific network selection or preference policies for a given network service activity or set of network service activities. In some embodiments, associating the network service usage activity with a network service usage control policy or a network service usage notification policy, includes dynamically associating based on one or more of the following: a network busy state, a time of day, a user input/preference, an associated service plan (e.g., 25 MB data plan, 5G data plan, or an unlimited data plan or other data/service usage plan), an application behavior, a messaging layer behavior, a power state of device, a device usage state, a time based criteria, availability of alternative networks, and a set of policy rules for selecting and/or controlling traffic on one or more of the alternative networks. In some embodiments, a network service usage control policy (e.g., a network capacity controlled services policy) includes defining the network service usage control policy for one or more service plans, defining network access policy rules for one or more devices or groups of devices in a single or multi-user scenarios such as family and enterprise plans, defining network access policy rules for one or more users or groups of users, allowing or disallowing network access events or attempts, modulating the number of network access events or attempts, aggregating network access events or attempts into a group of access events or attempts, time windowing network access events or attempts, time windowing network access events or attempts based on the application or function being served by the network access events or attempts, time windowing network access events or attempts to pre-determined time windows, time windowing network access events or attempts to time windows where a measure of network busy state is within a range, assigning the allowable types of access events or attempts, assigning the allowable functions or applications that are allowed network access events or attempts, assigning the priority of one or more network access events or attempts, defining the allowable duration of network access events or attempts, defining the allowable speed of network access events or attempts, defining the allowable network destinations for network access events or attempts, defining the allowable applications for network access events or attempts, defining the QoS rules for one or more network access events or attempts, defining or setting access policy rules for one or more applications, defining or setting access policy rules for one or more network destinations, defining or setting access policy rules for one or more devices, defining or setting access policy rules for one or more network services, defining or setting access policy rules for one or more traffic types, defining or setting access policy rules for one or more QoS classes, and defining or setting access policy rules based on any combination of device, application, network destination, network service, traffic type, QoS class, and/or other criteria/measures. In some embodiments, a network service usage control policy (e.g., a network capacity controlled services policy) includes a traffic control policy. In some embodiments, the traffic control policy includes a traffic control setting. In some embodiments, the traffic control policy includes a traffic control/tier, and the traffic control/tier includes the traffic control setting. In some embodiments, the traffic control policy includes one or more of the following: block/allow settings, throttle settings, adaptive throttle settings, QoS class settings including packet error rate, jitter and delay settings, queue settings, and tag settings (e.g., for packet tagging certain traffic flows). In some embodiments, QoS class settings, include one or more of the following: throttle level, priority queuing relative to other device traffic, time window parameters, and hold or delay while accumulating or aggregating traffic into a larger stream/burst/packet/group of packets. In some embodiments, the traffic control policy includes filters implemented as indexes into different lists of policy settings (e.g., using cascade filtering techniques), in which the policy filters include one or more of the following: a network, a service plan, an application, a time of day, and a network busy state. For example, a two dimensional traffic control implementation scheme can be provided using a network busy state and/or a time of day as an index into a traffic control setting (e.g., a certain application's priority level can be increased or decreased based on a network busy state and/or time of day). In some embodiments, the traffic control policy is used for selecting the network from a list of available networks, blocking or reducing access until a connection is made to an alternative network, and/or modifying or replacing a network stack interface of the device to provide for intercept or discontinuance of network socket interface messages to applications or OS functions. In some embodiments, a traffic control setting is selected based on the network service usage control policy. In some embodiments, the traffic control setting is implemented on the device based on the network service usage control policy. In some embodiments, the implemented traffic control setting controls traffic/traffic flows of a network capacity controlled service. In some embodiments, the traffic control setting is selected based on one or more of the following: a time of day, a day of week, a special time/date (e.g., a holiday or a network maintenance time/date), a network busy state, a priority level associated with the network service usage activity, a QoS class associated with the network service usage activity (e.g., emergency traffic), which network the network service activity is gaining access from, which networks are available, which network the network service activity is connected to, which base station or communication channel the network service activity is connected to, and a network dependent set of traffic control policies that can vary depending on which network the service activity is gaining access from (e.g., and/or various other criteria/measures as described herein). In some embodiments, the traffic control setting includes one or more of the following: allow/block, delay, throttle, QoS class implementation, queue, tag, generate a user notification, random back off, clear to send received from a network element, hold for scheduled transmission time slot, selecting the network from the available networks, and blocking or reducing access until a connection is made to an alternative network. In some embodiments, the traffic control setting is selected based on a network capacity controlled services priority state of the network service usage activity and a network busy state. In some embodiments, the traffic control setting is selected based on a network capacity controlled services priority state of the network service usage activity and a network busy state and is global (e.g., the same) for all network capacity controlled services activities or varies based on a network service usage activity priority, user preferences or option selection, an application, a time based criteria, a service plan, a network the device or service activity is gaining access from, a redetermination of a network congestion state after adapting to a previously determined network busy state, and/or other criteria/measures as described herein. In some embodiments, network capacity controlled services traffic (e.g., traffic flows) is differentially controlled for protecting network capacity. For example, various software updates for an OS and one or more applications on the device can be differentially controlled using the various techniques described herein. As another example, security/antimalware software (e.g., antivirus, firewall, content protection, intrusion detection/prevention, and/or other security/antimalware software) can be differentially controlled using the various techniques described herein. As yet another example, network backups/imaging, content downloads (e.g., exceeding a threshold individually and/or in aggregate, such as for image, music, video, eBook content, email attachments, content/media subscriptions, RSS/news feeds, text/image/video chat, software updates, and/or other content downloads) can be differentially controlled using the various techniques described herein. For example, using the DAS for protecting network capacity techniques described herein an adaptive policy control for protecting network capacity can be provided. A network capacity controlled services list can be generated, updated, reported, and/or received by the device and stored on the device (e.g., the list can be based on adapted to the service plan associated with the device). If a monitored network service usage activity is not on the list, then the device can report the monitored network service usage activity to a network element (e.g., for a monitored network service usage activity that also exceeds a certain threshold, based on a network busy state, based on a time based criteria, and/or other criteria/measure). As an example, monitored network service usage activity can be reported if/when the monitored network service usage activity exceeds a data usage threshold (e.g., 50 MB total data usage per day, a socket opening frequency/rate, velocity of data usage at an instant in time, or more complicated thresholds over time, over peak periods, by content and time, by various other parameters/thresholds). As another example, the monitored network service usage activity can be reported based on testing of the network service usage behavior and/or application developer characterization input. The report can include information that identifies the network service usage activity and various network service usage parameters. In some embodiments, a notification setting is selected based on a service usage notification policy. In some embodiments, a notification setting includes a user notification setting (e.g., various user notifications settings as described above with respect to FIG. 18 ). In some embodiments, classifying the network service usage activity further includes classifying the network service usage activity (e.g., using a usage threshold filter and/or cascading filter techniques) into one or more of a plurality of classification categories for differential network access control for protecting network capacity. In some embodiments, classifying the network service usage activity, further includes classifying the network service usage activity into one or more network capacity controlled services in which the network capacity controlled services include one or more of the following: applications requiring data network access, application software updates, applications requiring network information, applications requiring GPS or physical location, operating system software updates, security software updates, network based backups, email downloads, and a set of activities configured as network capacity controlled service activities based on a service profile and/or user input (e.g., and/or various other types of network service usage activities as described herein and as will now be apparent to one of ordinary skill in the art). For example, network capacity controlled services can include software updates for OS and applications, OS background network accesses, cloud synchronization services, RSS feeds & other background information feeds, browser/application/device behavior reporting, background email downloads, content subscription service updates and downloads (e.g., music/video downloads, news feeds), text/voice/video chat clients, security updates (e.g., antimalware updates), peer to peer networking application updates, inefficient network access sequences during frequent power cycling or power save state cycling, large downloads or other high bandwidth accesses, and greedy application programs that constantly/repeatedly access the network with small transmissions or requests for information. In some embodiments, a network capacity controlled services list is static, adaptive, generated using a service processor, received from a network element (e.g., service controller or service cloud), received from a network element (e.g., service controller or service cloud) and based at least in part on device activity reports received from the service processor, based on criteria set by pre-testing, report of behavior characterization performed by the application developer, and/or based at least in part on user input. In some embodiments, the network capacity controlled services list includes one or more network service activity background (QoS) classes. In some embodiments, classifying the network service usage activity further includes classifying the network service usage activity based on one or more of the following: application or widget (e.g., Outlook, Skype, iTunes, Android email, weather channel weather widget, iCal, Firefox Browser, etc), application type (e.g., user application, system application/utility/function/process, OS application/utility/function/process, email, browser, widget, malware (such as a virus or suspicious process), RSS feed, device synchronization service, download application, network backup/imaging application, voice/video chat, peer to peer content application or other peer to peer application, streaming media feed or broadcast reception/transmission application, network meeting application, chat application or session, and/or any other application or process identification and categorization), OS/system function (e.g., any system application/utility/function/process and/or OS application/utility/function/process, such as a OS update and/or OS error reporting), modem function, network communication function (e.g., network discovery or signaling, EtherType messages, connection flow/stream/session set up or tear down, network authentication or authorization sequences, IP address acquisition, and DNS services), URL and/or domain, destination/source IP address, protocol, traffic type, socket (e.g., IP address, protocol, and/or port), socket address/label/identifier (e.g., port address/port number), content type (e.g., email downloads, email text, video, music, eBooks, widget update streams, and download streams), port (e.g., port number), QoS classification level, time of day, on peak or off peak, network time, network busy state, access network selected, service plan selected, user preferences, device credentials, user credentials, and/or status, modem power cycling or power state changes, modem authentication processes, modem link set up or tear down, modem management communications, modem software or firmware updates, modem power management information, device power state, and modem power state. In some embodiments, classifying the network service usage activity further includes associating the classified network service usage activity with an ID (e.g., an application ID, which can be, for example, a unique number, name, and/or signature). In some embodiments, classifying the network service usage activity further includes classifying the network service usage activity using a plurality of classification parameters, including one or more of the following: application ID, remote IP (e.g., URL, domain, and/or IP address), remote port, protocol, content type, a filter action class (e.g., network busy state class, QoS class, time of day, network busy state, and/or other criteria/measures), and access network selected. In some embodiments, classifying the network service usage activity further includes using a combination of parameters as discussed above to determine the classification of the network service usage activity. In some embodiments, classifying the network service usage activity further includes classifying the network service usage activity as a network capacity controlled service, a non-network capacity controlled service, a blocked or disallowed service, and/or a not yet classified/identified service (e.g., unknown/yet to be determined classification or pending classification). In some embodiments, an application connection, OS connection, and/or other service activity is classified as a network capacity controlled service activity when the device has been inactive (e.g., or in a power save state) for a period of time (e.g., when the user has not interacted with it for a period of time, when it has not displayed user notification policy, and/or a user input has not been received for a period of time, and/or when a power save state is entered). In some embodiments, an application connection, OS connection, and/or other service activity is classified as a network capacity controlled service activity when the monitored network service usage activity exceeds a data usage threshold for more than one application connection, OS connection, and/or other service activity (e.g., aggregated data usage exceeds the data usage threshold); or for a specific application connection. In some embodiments, an application connection, OS connection, and/or other service activity is classified as a network capacity controlled service activity when the monitored network service usage activity exceeds a data usage threshold based on a predetermined list of one or more data usage limits, based on a list received from a network element, usage time limit (e.g., based on a period of time exceeding a usage limit), and/or based on some other usage related criteria/measures. In some embodiments, classifying the network service usage activity further includes classifying the network service usage activity as a network capacity controlled service based on a network peak time, a network busy state, or a network connection to the device falls below a certain performance level (e.g., higher/lower priorities assigned based on various such criteria/other input/factors). In some embodiments, one or more of the network capacity controlled services are associated with a different network access policy set for one or more networks and/or one or more alternative networks. In some embodiments, one or more of the network capacity controlled services are associated with a different notification policy set for one or more networks and/or one or more alternative networks. In some embodiments, the network capacity controlled services list is stored on the device. In some embodiments, the network capacity controlled services list is received/periodically updated from a network element and stored on the device. In some embodiments, the network capacity controlled services list includes network capacity controlled services, non-network capacity controlled services (e.g., foreground services or services based on various possibly dynamic criteria are not classified as network capacity controlled services), and an unclassified set of services (e.g., grey list including one or more network service activities pending classification based on further analysis and/or input, such as from a network element, service provider, and/or user). In some embodiments, the network capacity controlled services list is based on one or more of the following: predefined/predesignated (e.g., network, service plan, pre-test and/or characterized by an application developer) criteria; device assisted/based monitoring (e.g., using a service processor); network based monitoring (e.g., using a DPI gateway); network assisted analysis (e.g., based on device reports of DAS activity analysis). For example, the device can report device monitored network service usage activities (e.g., all monitored network service usage activities or a subset based on configuration, threshold, service plan, network, and/or user input) to the network element. As another example, the network element can update the network capacity controlled services list and send the updated list to the device. As yet another example, the network element can perform a statistical analysis of network service activities across a plurality of devices based on the device based and/or network based network service usage activity monitoring/reporting. In some embodiments, a network service usage activity is determined to be an active application or process (e.g., based on a user interaction with the device and/or network service usage activity, such as a pop-up and/or other criteria/measures). In some embodiments, implementing traffic control for network capacity controlled services is provided using various techniques. In some embodiments, the device includes a service processor agent or function to intercept, block, modify, remove or replace UI messages, notifications or other UI communications generated by a network service activity that whose network service usage is being controlled or managed (e.g., using various measurement points). For example, this technique can be used to provide for an improved user experience (e.g., to prevent an application that is being controlled for protecting network capacity from generating repeated and/or confusing messages/alerts to the user). In some embodiments, a network stack interface of the device is replaced or modified to provide for intercept or discontinuance of network socket interface messages to applications or OS functions or other functions/software. In some embodiments, implementing traffic control for network capacity controlled services using DAS techniques is provided using various techniques in which the network service usage activity is unaware of network capacity control (e.g., does not support an API or other interface for implementing network capacity control). For example, network service application messaging interface based techniques can be used to implement traffic control. Example network service application messaging interfaces include the following: network stack API, network communication stream/flow interface, network stack API messages, EtherType messages, ARP messages, and/or other messaging or other or similar techniques as will now be apparent to one of ordinary skill in the art in view of the various embodiments described herein. In some embodiments, network service usage activity control policies or network service activity messages are selected based on the set of traffic control policies or service activity messages that result in reduced or modified user notification by the service activity due to network capacity controlled service policies applied to the network service activity. In some embodiments, network service usage activity control policies or network service activity messages are selected based on the set of traffic control policies or service activity messages that result in reduced disruption of device operation due to network capacity controlled service activity policies applied to the network service activity. In some embodiments, network service usage activity control policies or network service activity messages are selected based on the set of traffic control policies or service activity messages that result in reduced disruption of network service activity operation due to network capacity controlled service activity policies applied to the network service activity. In some embodiments, implementing traffic control for network capacity controlled services is provided by intercepting opens/connects/writes. In some embodiments, implementing traffic control for network capacity controlled services is provided by intercepting stack API level or application messaging layer requests (e.g., socket open/send requests). For example, an intercepted request can be copied (e.g., to memory) and queued (e.g., delayed or throttled) or dropped (e.g., blocked). As another example, an intercepted request can be copied into memory and then a portion of the transmission can be retrieved from memory and reinjected (e.g., throttled). As yet another example, intercepting messaging transmissions can be parsed inline and allowed to transmit (e.g., allowed), and the transmission or a portion of the transmission can be copied to memory for classifying the traffic flow. In some embodiments, implementing traffic control for network capacity controlled services is provided by intercepting or controlling or modulating UI notifications. In some embodiments, implementing traffic control for network capacity controlled services is provided by killing or suspending the network service activity. In some embodiments, implementing traffic control for network capacity controlled services is provided by deprioritizing the process(es) associated with the service activity (e.g., CPU scheduling deprioritization). In some embodiments, implementing traffic control for network capacity controlled services using DAS techniques for network service usage activities that are unaware of network capacity control is provided by emulating network API messaging (e.g., effectively providing a spoofed or emulated network API). For example, an emulated network API can intercept, modify, block, remove, and/or replace network socket application interface messages and/or EtherType messages (e.g., EWOULDBLOCK, ENETDOWN, ENETUNREACH, EHOSTDOWN, EHOSTUNREACH, EALRADY, EINPROGRESS, ECONNREFUSED, EINPROGRESS, ETIMEDOUT, and/other such messages). As another example, an emulated network API can modify, swap, and/or inject network socket application interface messages (socket( ), connect( ), read( ), write( ), close( ), and other such messages) that provide for control or management of network service activity service usage behavior. As yet another example, before a connection is allowed to be opened (e.g., before a socket is opened), transmission, or a flow/stream is initiated, it is blocked and a message is sent back to the application (e.g., a reset message in response to a sync request or another message that the application will understand and can interpret to indicate that the network access attempt was not allowed/blocked, that the network is not available, and/or to try again later for the requested network access). As yet another example, the socket can be allowed to open but after some point in time (e.g., based on network service usage, network busy state, time based criteria, and/or some other criteria/measure), the stream is blocked or the socket is terminated. As yet another example, time window based traffic control techniques can be implemented (e.g., during non-peak, not network busy state times), such as by allowing network access for a period of time, blocking for a period of time, and then repeating to thereby effectively spread the network access out either randomly or deterministically. Using these techniques, an application that is unaware of network capacity control based traffic control can send and receive standard messaging, and the device can implement traffic controls based on the network capacity control policy using messaging that the network service usage activity (e.g., application or OS or software function) can understand and will respond to in a typically predictable manner as would now be apparent to one of ordinary skill in the art. In some embodiments, implementing traffic control for network capacity controlled services using DAS techniques is provided using various techniques in which the network service usage activity is aware of network capacity control (e.g., the network service usage activity supports an API or other interface for implementing network capacity control). For example, a network access API as described herein can be used to implement traffic control for network capacity controlled services. In some embodiments, the API facilitates communication of one or more of the following: network access conditions, network busy state or network availability state of one or more networks or alternative networks, one or more network capacity controlled service policies (e.g., the network service can be of a current network access setting, such as allow/block, throttle, queue, scheduled time/time slot, and/or defer, which can be based on, for example, a current network, a current network busy state, a time based criteria, a service plan, a network service classification, and/or other criteria/measures), a network access request from a network service activity, a query/polled request to a network service activity, a network access grant to a network service activity (e.g., including a priority setting and/or network capacity controlled service classification, a scheduled time/time slot, an alternative network, and/or other criteria/measures), a network busy state or a network availability state or a network QoS state. In some embodiments, implementing traffic control for network capacity controlled services using network assisted/based techniques is provided using various techniques in which the network service usage activity is unaware of network capacity control (e.g., does not support an API or other interface for implementing network capacity control). In some embodiments, DPI based techniques are used to control network capacity controlled services (e.g., to block or throttle network capacity controlled services at a DPI gateway). In some embodiments, implementing traffic control for network capacity controlled services using network assisted/based techniques is provided using various techniques in which the network service usage activity is aware of network capacity control (e.g., does support an API or other interface for implementing network capacity control). In some embodiments, the application/messaging layer (e.g., a network API as described herein) is used to communicate with a network service activity to provide associated network capacity controlled service classifications and/or priorities, network busy state information or network availability of one or more networks or alternative networks, a network access request and response, and/other criteria/measures as similarly described herein. In some embodiments, DAS for protecting network capacity includes implementing a service plan for differential charging based on network service usage activities (e.g., including network capacity controlled services). In some embodiments, the service plan includes differential charging for network capacity controlled services. In some embodiments, the service plan includes a cap network service usage for network capacity controlled services. In some embodiments, the service plan includes a notification when the cap is exceeded. In some embodiments, the service plan includes overage charges when the cap is exceeded. In some embodiments, the service plan includes modifying charging based on user input (e.g., user override selection as described herein, in which for example, overage charges are different for network capacity controlled services and/or based on priority levels and/or based on the current access network). In some embodiments, the service plan includes time based criteria restrictions for network capacity controlled services (e.g., time of day restrictions with or without override options). In some embodiments, the service plan includes network busy state based criteria restrictions for network capacity controlled services (e.g., with or without override options). In some embodiments, the service plan provides for network service activity controls to be overridden (e.g., one time, time window, usage amount, or permanent) (e.g., differentially charge for override, differentially cap for override, override with action based UI notification option, and/or override with UI setting). In some embodiments, the service plan includes family plan or multi-user plan (e.g., different network capacity controlled service settings for different users). In some embodiments, the service plan includes multi-device plan (e.g., different network capacity controlled service settings for different devices, such as smart phone v. laptop v. net book v. eBook). In some embodiments, the service plan includes free network capacity controlled service usage for certain times of day, network busy state(s), and/or other criteria/measures. In some embodiments, the service plan includes network dependent charging for network capacity controlled services. In some embodiments, the service plan includes network preference/prioritization for network capacity controlled services. In some embodiments, the service plan includes arbitration billing to bill a carrier partner or sponsored service partner for the access provided to a destination, application, or other network capacity controlled service. In some embodiments, the service plan includes arbitration billing to bill an application developer for the access provided to a destination, application or other network capacity controlled service. In some application scenarios, excess network capacity demand can be caused by modem power state changes on the device. For example, when an application or OS function attempts to connect to the network for any reason when the modem is in a power save state wherein the modem is not connected to the network, it can cause the modem to change power save state, reconnect to the network, and then initiate the application network connection. In some cases, this can also cause the network to re-initiate a modem connection session (e.g., PPP session) which in addition to the network capacity consumed by the basic modem connection also consumes network resources for establishing the PPP session. Accordingly, in some embodiments, network service usage activity control policies are implemented that limit or control the ability of applications, OS functions, and/or other network service usage activities (e.g., network capacity controlled services) from changing the modem power control state or network connection state. In some embodiments, a service usage activity is prevented or limited from awakening the modem, changing the power state of the modem, or causing the modem to connect to the network until a given time window is reached. In some embodiments, the frequency a service usage activity is allowed to awakening the modem, changing the power state of the modem, or causing the modem is limited. In some embodiments, a network service usage activity is prevented from awakening the modem, changing the power state of the modem, or causing the modem until a time delay has passed. In some embodiments, a network service usage activity is prevented from awakening the modem, changing the power state of the modem, or causing the modem until multiple network service usage activities require such changes in modem state, or until network service usage activity is aggregated to increase network capacity and/or network resource utilization efficiency. In some embodiments, limiting the ability of a network service usage activity to change the power state of a modem includes not allowing the activity to power the modem off, place the modem in sleep mode, or disconnect the modem from the network. In some embodiments, these limitations on network service usage activity to awaken the modem, change the power state of the modem, or cause the modem to connect to a network are set by a central network function (e.g., a service controller or other network element/function) policy communication to the modem. In some embodiments, these power control state policies are updated by the central network function. FIG. 11 depicts an example of a computer system 1100 on which techniques described in this paper can be implemented. The computer system 1100 may be a conventional computer system that can be used as a client computer system, such as a wireless client or a workstation, or a server computer system. The computer system 1100 includes a computer 1102 , I/O devices 1104 , and a display device 1106 . The computer 1102 includes a processor 1108 , a communications interface 1110 , memory 1112 , display controller 1114 , non-volatile storage 1116 , and I/O controller 1118 . The computer 1102 may be coupled to or include the I/O devices 1104 and display device 1106 . The computer 1102 interfaces to external systems through the communications interface 1110 , which may include a modem or network interface. It will be appreciated that the communications interface 1110 can be considered to be part of the computer system 1100 or a part of the computer 1102 . The communications interface 1110 can be an analog modem, ISDN modem, cable modem, token ring interface, satellite transmission interface (e.g. “direct PC”), or other interfaces for coupling a computer system to other computer systems. The processor 1108 may be, for example, a conventional microprocessor such as an Intel Pentium microprocessor or Motorola power PC microprocessor. The memory 1112 is coupled to the processor 1108 by a bus 1170 . The memory 1112 can be Dynamic Random Access Memory (DRAM) and can also include Static RAM (SRAM). The bus 1170 couples the processor 1108 to the memory 1112 , also to the non-volatile storage 1116 , to the display controller 1114 , and to the I/O controller 1118 . The I/O devices 1104 can include a keyboard, disk drives, printers, a scanner, and other input and output devices, including a mouse or other pointing device. The display controller 1114 may control in the conventional manner a display on the display device 1106 , which can be, for example, a cathode ray tube (CRT) or liquid crystal display (LCD). The display controller 1114 and the I/O controller 1118 can be implemented with conventional well known technology. The non-volatile storage 1116 is often a magnetic hard disk, an optical disk, or another form of storage for large amounts of data. Some of this data is often written, by a direct memory access process, into memory 1112 during execution of software in the computer 1102 . One of skill in the art will immediately recognize that the terms “machine-readable medium” or “computer-readable medium” includes any type of storage device that is accessible by the processor 1108 and also encompasses a carrier wave that encodes a data signal. The computer system 1100 is one example of many possible computer systems which have different architectures. For example, personal computers based on an Intel microprocessor often have multiple buses, one of which can be an I/O bus for the peripherals and one that directly connects the processor 1108 and the memory 1112 (often referred to as a memory bus). The buses are connected together through bridge components that perform any necessary translation due to differing bus protocols. Network computers are another type of computer system that can be used in conjunction with the teachings provided herein. Network computers do not usually include a hard disk or other mass storage, and the executable programs are loaded from a network connection into the memory 1112 for execution by the processor 1108 . A Web TV system, which is known in the art, is also considered to be a computer system, but it may lack some of the features shown in FIG. 11 , such as certain input or output devices. A typical computer system will usually include at least a processor, memory, and a bus coupling the memory to the processor. In addition, the computer system 1100 is controlled by operating system software which includes a file management system, such as a disk operating system, which is part of the operating system software. One example of operating system software with its associated file management system software is the family of operating systems known as Windows® from Microsoft Corporation of Redmond, Wash., and their associated file management systems. Another example of operating system software with its associated file management system software is the Linux operating system and its associated file management system. The file management system is typically stored in the non-volatile storage 1116 and causes the processor 1108 to execute the various acts required by the operating system to input and output data and to store data in memory, including storing files on the non-volatile storage 1116 . Some portions of the detailed description are presented in terms of algorithms and symbolic representations of operations on data bits within a computer memory. These algorithmic descriptions and representations are the means used by those skilled in the data processing arts to most effectively convey the substance of their work to others skilled in the art. An algorithm is here, and generally, conceived to be a self-consistent sequence of operations leading to a desired result. The operations are those requiring physical manipulations of physical quantities. Usually, though not necessarily, these quantities take the form of electrical or magnetic signals capable of being stored, transferred, combined, compared, and otherwise manipulated. It has proven convenient at times, principally for reasons of common usage, to refer to these signals as bits, values, elements, symbols, characters, terms, numbers, or the like. It should be borne in mind, however, that all of these and similar terms are to be associated with the appropriate physical quantities and are merely convenient labels applied to these quantities. Unless specifically stated otherwise as apparent from the following discussion, it is appreciated that throughout the description, discussions utilizing terms such as “processing” or “computing” or “calculating” or “determining” or “displaying” or the like, refer to the action and processes of a computer system, or similar electronic computing device, that manipulates and transforms data represented as physical (electronic) quantities within the computer system's registers and memories into other data similarly represented as physical quantities within the computer system memories or registers or other such information storage, transmission or display devices. The present invention, in some embodiments, also relates to apparatus for performing the operations herein. This apparatus may be specially constructed for the required purposes, or it may comprise a general purpose computer selectively activated or reconfigured by a computer program stored in the computer. Such a computer program may be stored in a computer readable storage medium, such as, but is not limited to, read-only memories (ROMs), random access memories (RAMs), EPROMs, EEPROMs, magnetic or optical cards, any type of disk including floppy disks, optical disks, CD-ROMs, and magnetic-optical disks, or any type of media suitable for storing electronic instructions, and each coupled to a computer system bus. The algorithms and displays presented herein are not inherently related to any particular computer or other apparatus. Various general purpose systems may be used with programs in accordance with the teachings herein, or it may prove convenient to construct more specialized apparatus to perform the required method steps. The required structure for a variety of these systems will appear from the description below. In addition, the present invention is not described with reference to any particular programming language, and various embodiments may thus be implemented using a variety of programming languages. Although the foregoing embodiments have been described in some detail for purposes of clarity of understanding, the invention is not limited to the details provided. There are many alternative ways of implementing the invention. The disclosed embodiments are illustrative and not restrictive. INCORPORATION BY REFERENCE The following U.S. applications are hereby incorporated by reference for all purposes: application Ser. No. 13/248,025, filed Sep. 28, 2011, entitled SERVICE DESIGN CENTER FOR DEVICE ASSISTED SERVICES; application Ser. No. 13/134,028, filed May 25, 2011, entitled DEVICE-ASSISTED SERVICES FOR PROTECTING NETWORK CAPACITY, now U.S. Pat. No. 8,589,541 (issued Nov. 19, 2013); application Ser. No. 13/134,005, filed May 25, 2011, entitled SYSTEM AND METHOD FOR WIRELESS NETWORK OFFLOADING, now U.S. Pat. No. 8,635,335 (issued Jan. 21, 2014); application Ser. No. 12/695,021, filed Jan. 27, 2010, entitled QUALITY OF SERVICE FOR DEVICE ASSISTED SERVICES, now U.S. Pat. No. 8,346,225 (issued Jan. 1, 2013); application Ser. No. 12/380,780, entitled AUTOMATED DEVICE PROVISIONING AND ACTIVATION, filed Mar. 2, 2009, now U.S. Pat. No. 8,839,388 (issued Sep. 16, 2014); application Ser. No. 12/380,778, filed Mar. 2, 2009, entitled VERIFIABLE DEVICE ASSISTED SERVICE USAGE BILLING WITH INTEGRATED ACCOUNTING, MEDIATION ACCOUNTING, AND MULTI-ACCOUNT, now U.S. Pat. No. 8,321,526 (issued Nov. 27, 2012); Provisional Application No. 61/206,354, entitled SERVICES POLICY COMMUNICATION SYSTEM AND METHOD, filed Jan. 28, 2009; Provisional Application No. 61/206,944, entitled SERVICES POLICY COMMUNICATION SYSTEM AND METHOD, filed Feb. 4, 2009; Provisional Application No. 61/207,393, entitled SERVICES POLICY COMMUNICATION SYSTEM AND METHOD filed Feb. 10, 2009; Provisional Application No. 61/207,739, entitled SERVICES POLICY COMMUNICATION SYSTEM AND METHOD filed Feb. 13, 2009; Provisional Application No. 61/252,151, filed Oct. 15, 2009, entitled SECURITY TECHNIQUES FOR DEVICE ASSISTED SERVICES; Provisional Application No. 61/252,153, filed Oct. 15, 2009, entitled DEVICE GROUP PARTITIONS AND SETTLEMENT PLATFORM; Provisional Application No. 61/348,022, filed May 25, 2010, entitled DEVICE ASSISTED SERVICES FOR PROTECTING NETWORK CAPACITY; Provisional Application No. 61/381,159, filed Sep. 9, 2010, entitled DEVICE ASSISTED SERVICES FOR PROTECTING NETWORK CAPACITY; Provisional Application No. 61/407,358, filed Oct. 27, 2010, entitled SERVICE CONTROLLER AND SERVICE PROCESSOR ARCHITECTURE; Provisional Application No. 61/422,572, filed Dec. 13, 2010, entitled SYSTEM INTERFACES AND WORKFLOWS FOR DEVICE ASSISTED SERVICES; Provisional Application No. 61/422,574, filed Dec. 13, 2010, entitled SECURITY AND FRAUD DETECTION FOR DEVICE ASSISTED SERVICES; Provisional Application No. 61/435,564, filed Jan. 24, 2011, entitled FRAMEWORK FOR DEVICE ASSISTED SERVICES; Provisional Application No. 61/472,606, filed Apr. 6, 2011, entitled MANAGING SERVICE USER DISCOVERY AND SERVICE LAUNCH OBJECT PLACEMENT ON A DEVICE; and Provisional Application No. 61/422,565, filed Dec. 13, 2010, entitled SERVICE DESIGN CENTER FOR DEVICE ASSISTED SERVICES.

Description

Topics

Download Full PDF Version (Non-Commercial Use)

Patent Citations (1411)

    Publication numberPublication dateAssigneeTitle
    US-2008089303-A1April 17, 2008Jeff Wirtanen, Islam M Khaledul, Jin KimSystem and method for deactivating IP sessions of lower priority
    US-2013111572-A1May 02, 2013Cellco Partnership D/B/A Verizon WirelessIp push platform and connection protocol in a push notification framework
    US-7933274-B2April 26, 2011Samsung Electronics Co., Ltd.Quality of service in a home network
    US-7167078-B2January 23, 2007Pourchot Shawn CElectric, telephone or network access control system and method
    US-8086497-B1December 27, 2011United Services Automobile AssociationSystems and methods for price searching and customer self-checkout using a mobile device
    US-8200509-B2June 12, 2012Expanse Networks, Inc.Masked data record access
    US-8094551-B2January 10, 2012At&T Mobility Ii LlcExchange of access control lists to manage femto cell coverage
    US-7729326-B2June 01, 2010Symbol Technologies, Inc.Wireless network system with wireless access ports
    US-2006174035-A1August 03, 2006At&T Corp.System, device, & method for applying COS policies
    US-2009180391-A1July 16, 2009Broadcom CorporationNetwork activity anomaly detection
    US-6606744-B1August 12, 2003Accenture, LlpProviding collaborative installation management in a network-based supply chain environment
    US-7222304-B2May 22, 2007Nortel Networks LimitedMultitasking graphical user interface
    US-7248570-B2July 24, 2007Microsoft CorporationSystem and method for coordinating bandwidth usage of a communication channel by wireless network nodes
    US-8000276-B2August 16, 2011Wefi, Inc.Providing easy access to radio networks
    US-9049010-B2June 02, 2015Spyrus, Inc.Portable data encryption device with configurable security functionality and method for file encryption
    US-7242668-B2July 10, 2007Alcatel LucentNetwork monitoring system responsive to changes in packet arrival variance and mean
    US-2006178918-A1August 10, 2006Accenture LlpTechnology sharing during demand and supply planning in a network-based supply chain environment
    US-2009068984-A1March 12, 2009Burnett R AlanMethod, apparatus, and system for controlling mobile device use
    US-2005228985-A1October 13, 2005Nokia CorporationControlling access to services in a communications system
    US-2008081606-A1April 03, 2008Cole Terry LConnection manager with branded connection notification
    US-6038540-AMarch 14, 2000The Dow Chemical CompanySystem for real-time economic optimizing of manufacturing process control
    US-2008034063-A1February 07, 2008Research In Motion LimitedMethod and system for retrieving a document associated with a message received on a mobile device
    US-6449479-B1September 10, 2002Telefonaktiebolaget Lm Ericsson (Publ)Apparatus and method for mobile subscriber service modification
    US-6064878-AMay 16, 2000At&T Corp.Method for separately permissioned communication
    US-2010131584-A1May 27, 2010Johnson William JMobile data processing system moving interest radius
    US-2009036111-A1February 05, 2009Mobile Iron, Inc.Virtual Instance Architecture for Mobile Device Management Systems
    US-6263055-B1July 17, 2001Lucent Technologies Inc.System for suppressed ringing access of subscriber lines to identify usage anomalies of customer premise equipment connected thereto
    US-2006160536-A1July 20, 2006Intel CorporationMethods and apparatus for transferring service flow context of mobile broadband wireless access networks
    US-2004133668-A1July 08, 2004Broadcom CorporationSeamlessly networked end user device
    US-8254915-B2August 28, 2012Embarq Holdings Company, LlcSystem and method for enabling subscribers of a communications carrier to access a network of other subscribers
    US-2005107091-A1May 19, 2005Rath Vannithamby, Duan Long L., Reza Shahidi, Wanshi Chen, Seema MadanDynamic voice over data prioritization for wireless communication networks
    US-6650887-B2November 18, 2003Telemac CorporationMobile phone system with host processor coordination and internal mobile phone accounting capabilities
    US-7620065-B2November 17, 2009Trellia Networks, Inc.Mobile connectivity solution
    US-7657920-B2February 02, 2010Marc Arseneau, Alain Charette, Jean Arseneau, Michel PoissonSystem and methods for enhancing the experience of spectators attending a live sporting event, with gaming capability
    US-7349695-B2March 25, 2008Nokia CorporationMultimode roaming mobile devices
    US-8352980-B2January 08, 2013At&T Intellectual Property I, LpSystem and method for single sign on targeted advertising
    US-7251218-B2July 31, 2007Van Drebbel Mariner LlcMethod and computer program product for internet protocol (IP)-flow classification in a wireless point to multi-point (PtMP) transmission system
    US-7409447-B1August 05, 2008Juniper Networks, Inc.Policy analyzer
    US-7805606-B2September 28, 2010Bea Systems, Inc.Computer system for authenticating a computing device
    US-7770785-B2August 10, 2010Qualcomm IncorporatedApparatus and methods for detection and management of unauthorized executable instructions on a wireless device
    US-8140690-B2March 20, 2012Riverbed Technology, Inc.Connection forwarding
    US-7953877-B2May 31, 2011Oracle International CorporationSystem and method for controlling data flow based upon a temporal policy
    US-2007280453-A1December 06, 2007Motorola, Inc.Method and system to provide access network information to a service
    US-7286834-B2October 23, 2007Sbc Knowledge Ventures, LpSystem and method for location based policy management
    US-8352360-B2January 08, 2013Toshiba Global Commerce Solutions Holdings CorporationMethod and system for secured transactions over a wireless network
    US-2004082346-A1April 29, 2004Telefonaktiebolaget Lm Ericsson (Publ)Enhanced-service provision
    US-2009005000-A1January 01, 2009Kajeet, Inc.System and methods for managing the utilization of a communications device
    US-7535880-B1May 19, 20092Wire, Inc.Method and apparatus for controlling wireless access to a network
    US-6879825-B1April 12, 2005At&T Wireless Services, Inc.Method for programming a mobile station using a permanent mobile station identifier
    US-8224382-B2July 17, 2012Parkervision, Inc.Wireless communications interface
    WO-2011149532-A1December 01, 2011Headwater Partners I LlcServices assistés par dispositif pour protéger la capacité de réseau
    US-2008070550-A1March 20, 2008Hose David AProviding Subscriber Specific Information Across Wireless Networks
    US-6628934-B2September 30, 2003Earthlink, Inc.Systems and methods for automatically provisioning wireless services on a wireless device
    US-2007282896-A1December 06, 2007Microsoft CorporationMulti-Dimensional Data Classification For User Interface Customizations
    US-7756757-B1July 13, 2010United Services Automobile Association (Usaa)Systems and methods for price searching and intelligent shopping lists on a mobile device
    US-8036387-B2October 11, 2011Nagra Vision S.A.Method for the transmission of management data
    US-8086791-B2December 27, 2011Dataram, Inc.Solid state memory device with PCI controller
    US-8306518-B1November 06, 2012Sprint Communications Company L.P.Handset service migration automation and subscriber identity module tracking
    US-2008005561-A1January 03, 2008Research In Motion LimitedAutomatic security action invocation for mobile communications device
    US-2006233108-A1October 19, 2006Microsoft CorporationAdaptive Bandwidth Throttling for Network Services
    US-2009307696-A1December 10, 2009Microsoft CorporationThread management based on device power state
    US-2008098062-A1April 24, 2008Verizon Services Corp.Systems And Methods For Managing And Monitoring Mobile Data, Content, Access, And Usage
    US-8190675-B2May 29, 2012Inditto, LlcMethod and system for providing access to remotely hosted services through a normalized application programming interface
    US-2006136882-A1June 22, 2006Nokia CorporationSystem and method for background JAVA application resource control
    US-2008025230-A1January 31, 2008Alpesh Patel, Praveen JoshiApplying quality of service to application messages in network elements based on roles and status
    US-6381316-B2April 30, 2002Unpaid Systems, Ltd.Enhanced communication platform and related communication method using the platform
    US-2007174490-A1July 26, 2007Greystripe Inc.System and methods for managing content in pre-existing mobile applications
    US-8713535-B2April 29, 2014Microsoft CorporationReliable and accurate usage detection of a software application
    US-8639215-B2January 28, 2014Gregory M. McGregor, Christopher M. McGregor, Travis M. McGregorSIM-centric mobile commerce system for deployment in a legacy network infrastructure
    US-2009113514-A1April 30, 2009At&T Mobility Ii LlcCascading Policy Management Deployment Architecture
    US-8448015-B2May 21, 2013My Computer Works, Inc.Remote computer diagnostic system and method
    US-6510152-B1January 21, 2003At&T Corp.Coaxial cable/twisted pair fed, integrated residence gateway controlled, set-top box
    US-8132256-B2March 06, 2012At&T Mobility Ii LlcHome networking using LTE radio
    US-8190122-B1May 29, 2012Cellco PartnershipMethod and system for managing mobile telephone numbers and mobile telephone subscribers' data without geography-based restriction
    US-8332375-B2December 11, 2012Nirvanix, Inc.Method and system for moving requested files from one storage location to another
    US-8825109-B2September 02, 2014Blackberry LimitedPolicy-based data routing for a multi-mode device
    US-2008010379-A1January 10, 2008Huawei Technologies Co., Ltd.Method and system for content charging
    US-5774532-AJune 30, 1998Mci CorporationSingle network record construction
    US-6532579-B2March 11, 2003Hitachi, Ltd.Semiconductor integrated circuit and design method and manufacturing method of the same
    US-7979069-B2July 12, 2011Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V.Mobile device and base station for a communication protocol with normal login and temporary login
    US-7801783-B2September 21, 2010Michael Kende, Macdonald Robert Christian, Gatto James GSystem and method for automatic analysis of rate information
    US-7401338-B1July 15, 2008Symantec Operating CorporationSystem and method for an access layer application programming interface for managing heterogeneous components of a storage area network
    US-2008132201-A1June 05, 2008Johan KarlbergMethods, devices and computer program products for tracking usage of a network by a plurality of users of a mobile phone
    US-7346410-B2March 18, 2008Seiko Epson CorporationMethod and system for manufacturing electronic device, electronic device, and electro-optical apparatus
    US-6748195-B1June 08, 2004Motorola, Inc.Wireless device having context-based operational behavior
    US-2008262798-A1October 23, 2008Samsung Electronics Co., Ltd.Method and system for performing distributed verification with respect to measurement data in sensor network
    EP-1503548-A1February 02, 2005fg microtec GmbHSystème de gestion de qualité de service distribué
    US-8160598-B2April 17, 2012At&T Intellectual Property Ii, L.P.Lightweight application level policy management for portable wireless devices under varying network
    US-5940472-AAugust 17, 1999Mci Communications CorporationIntelligent services network test system
    US-2005216421-A1September 29, 2005Mci. Inc.Integrated business systems for web based telecommunications management
    US-8166554-B2April 24, 2012Vmware, Inc.Secure enterprise network
    US-7042988-B2May 09, 2006Bluesocket, Inc.Method and system for managing data traffic in wireless networks
    US-8036600-B2October 11, 2011Airbiquity, Inc.Using a bluetooth capable mobile phone to access a remote network
    US-8090359-B2January 03, 2012Proctor Jr James Arthur, Proctor Iii James ArthurExchanging identifiers between wireless communication to determine further information to be exchanged or further services to be provided
    US-7212491-B2May 01, 2007Nec CorporationQoS control middleware in integrated network, QoS control method, and the program for the same
    US-8135388-B1March 13, 2012Sprint Communications Company L.P.Managing communication network capacity
    US-6185576-B1February 06, 2001Mcintosh LowrieDefining a uniform subject classification system incorporating document management/records retention functions
    US-5633868-AMay 27, 1997Lucent Technologies Inc.Virtual circuit management in cellular telecommunications
    US-2010080202-A1April 01, 2010Mark HansonWireless device registration, such as automatic registration of a wi-fi enabled device
    US-7289489-B1October 30, 2007At&T Corp.Method for billing IP broadband subscribers
    US-8279067-B2October 02, 2012Google Inc.Securing, monitoring and tracking shipping containers
    US-8521775-B1August 27, 2013At&T Mobility Ii LlcSystems and methods for implementing a master policy repository in a policy realization framework
    US-7957020-B2June 07, 2011Canon Kabushiki KaishaImage forming apparatus, image forming system, and control program thereof to manage printing sheet communications
    US-8185158-B2May 22, 2012Ntt Mobile Communications Network, Inc.Method and system for mobile communications
    US-5572528-ANovember 05, 1996Novell, Inc.Mobile networking method and apparatus
    US-6982733-B1January 03, 2006Ameranth Wireless, Inc.Information management and synchronous communications system with menu generation, and handwriting and voice modification of orders
    US-6226277-B1May 01, 2001Lucent Technologies Inc.Method for admitting new connections based on usage priorities in a multiple access system for communications networks
    US-8015234-B2September 06, 2011Sharp Laboratories Of America, Inc.Methods and systems for administering imaging device notification access control
    US-8533775-B2September 10, 2013Hewlett-Packard Development Company, L.P.Hierarchical policy management
    US-8103285-B2January 24, 2012Kyocera CorporationApparatus, system and method for determining a geographical location of a portable communication device
    US-7565141-B2July 21, 2009Macaluso Anthony GOver the air provisioning of mobile device settings
    US-7478420-B2January 13, 2009Novell, Inc.Administration of protection of data accessible by a mobile device
    US-5283904-AFebruary 01, 1994Intel CorporationMulti-processor programmable interrupt controller system
    US-2009254857-A1October 08, 2009Christopher Romine, Feenaghty Dennis M, Burke John M, Burke Joseph P, Russell MchughWireless communication device pre-purchase personalization
    US-6125391-ASeptember 26, 2000Commerce One, Inc.Market makers using documents for commerce in trading partner networks
    US-7778176-B2August 17, 2010Packeteer, Inc.Methods, apparatuses and systems facilitating concurrent classification and control of tunneled and non-tunneled network traffic
    US-7610047-B2October 27, 2009At&T Intellectual Property I, L.P.System and method for providing integrated voice and data services utilizing wired cordless access with unlicensed/unregulated spectrum and wired access with licensed/regulated spectrum
    US-8326319-B2December 04, 2012At&T Mobility Ii LlcCompensation of propagation delays of wireless signals
    US-8516552-B2August 20, 2013Headwater Partners I LlcVerifiable service policy implementation for intermediate networking devices
    US-9172553-B2October 27, 2015Icontrol Networks, Inc.Security system with networked touchscreen and gateway
    US-2005007993-A1January 13, 2005Mahdi Chambers, Desmond HazellSystem and method for optimizing network capacity in a cellular wireless network
    US-2007147324-A1June 28, 2007Mcgary FaithSystem and method for improved WiFi/WiMax retail installation management
    US-2004198331-A1October 07, 2004Sun Microsystems, Inc.System and method for advanced service interaction
    US-6690918-B2February 10, 2004Soundstarts, Inc.Networking by matching profile information over a data packet-network and a local area network
    US-7849161-B2December 07, 2010At&T Intellectual Property I, L.P.System and methods for remotely recovering and purging data from a wireless device in a communications network
    US-2006114821-A1June 01, 2006Willey William D, Plestid Thomas Leonard T, Islam Muhammad KFlow control buffering
    US-2008127304-A1May 29, 2008Ginter Karl L, Shear Victor H, Spahn Francis J, Van Wie David MSystems and methods for secure transaction management and electronic rights protection
    US-2007201502-A1August 30, 2007Maven Networks, Inc.Systems and methods for controlling the delivery behavior of downloaded content
    US-6535855-B1March 18, 2003The Chase Manhattan BankPush banking system and method
    US-7860088-B2December 28, 2010Qualcomm IncorporatedConcurrent internet protocol connectivity to an access terminal and a tethered device
    US-8326828-B2December 04, 2012International Business Machines CorporationMethod and system for employing a multiple layer cache mechanism to enhance performance of a multi-user information retrieval system
    US-7693720-B2April 06, 2010Voicebox Technologies, Inc.Mobile systems and methods for responding to natural language speech utterance
    US-8971841-B2March 03, 2015Microsoft CorporationOperating system supporting cost aware applications
    US-2013072177-A1March 21, 2013Qualcomm IncorporatedApplication catalog on an application server for wireless devices
    US-2008080457-A1April 03, 2008Cole Terry LConnection manager responsive to power state
    US-7027055-B2April 11, 2006The Commonwealth Of AustraliaData view of a modelling system
    US-8024397-B1September 20, 2011At&T Intellectual Property Ii, L.P.System for generating a services repository using a target services roadmap
    US-6157636-ADecember 05, 2000Bell Atlantic Network Services, Inc.Network session management with gateway-directory services and authorization control
    US-8838686-B2September 16, 2014Verizon Patent And Licensing Inc.Method and apparatus for delivery of content to a mobile device
    US-2007165630-A1July 19, 2007Nokia CorporationOptimization of PDP context usage
    US-6639975-B1October 28, 2003Microsoft CorporationInteractive billing control system
    US-8266681-B2September 11, 2012Ca, Inc.System and method for automatic network logon over a wireless network
    US-5903845-AMay 11, 1999At&T Wireless Services Inc.Personal information manager for updating a telecommunication subscriber profile
    US-7929960-B2April 19, 2011Research In Motion LimitedSystem and method for controlling device usage
    US-7133386-B2November 07, 2006Cisco Technology, Inc.Method and system for service portability across disjoint wireless networks
    US-2012196644-A1August 02, 2012Wefi, Inc.Dynamic Network Connection System and Method
    US-8468337-B2June 18, 2013International Business Machines CorporationSecure data transfer over a network
    US-8543814-B2September 24, 2013Rpx CorporationMethod and apparatus for using generic authentication architecture procedures in personal computers
    US-8160056-B2April 17, 2012At&T Intellectual Property Ii, LpSystems, devices, and methods for network routing
    US-8391262-B2March 05, 2013Huawei Technologies Co., Ltd.WLAN communication device
    US-6438575-B1August 20, 2002Clickmarks, Inc.System, method, and article of manufacture for wireless enablement of the world wide web using a wireless gateway
    US-2006206904-A1September 14, 2006Microsoft CorporationSystems and methods for supporting device access from multiple operating systems
    US-2004073672-A1April 15, 2004Fascenda Anthony C.Self-managed network access using localized access management
    US-8185093-B2May 22, 2012Mediatek Inc.Methods for handling an apparatus terminated communication request and communication apparatuses utilizing the same
    US-8275830-B2September 25, 2012Headwater Partners I LlcDevice assisted CDR creation, aggregation, mediation and billing
    US-8130793-B2March 06, 2012Embarq Holdings Company, LlcSystem and method for enabling reciprocal billing for different types of communications over a packet network
    US-2008240373-A1October 02, 2008International Business Machines CorporationSystem, method and program for controlling mp3 player
    US-2008005285-A1January 03, 2008Impulse Point, LlcMethod and System for Self-Scaling Generic Policy Tracking
    US-6119933-ASeptember 19, 2000Wong; Earl Chang, Miles; Gordon H.Method and apparatus for customer loyalty and marketing analysis
    US-6445777-B1September 03, 2002Netune Communications, Inc.Mobile tele-computer network
    US-2008235511-A1September 25, 2008Bce Inc.Device authentication and secure channel management for peer-to-peer initiated communications
    US-2008066150-A1March 13, 2008Blue JungleTechniques of Transforming Policies to Enforce Control in an Information Management System
    US-6983370-B2January 03, 2006Motorola, Inc.System for providing continuity between messaging clients and method therefor
    US-7680086-B2March 16, 2010Siemens Canada LimitedWireless local area network with clients having extended freedom of movement
    US-9002342-B2April 07, 2015Nokia CorporationSystem, apparatus, and method for dynamically customizing and configuring applications
    US-7760861-B1July 20, 2010At&T Intellectual Property Ii, L.P.Method and apparatus for monitoring service usage in a communications network
    US-8375136-B2February 12, 2013Innopath Software, Inc.Defining and implementing policies on managed object-enabled mobile devices
    US-7486185-B2February 03, 2009Spectrum Tracking Systems, Inc.Method and system for providing tracking services to locate an asset
    US-2008313315-A1December 18, 2008Jeyhan Karaoguz, Arya Behzad, Mark Buer, Macinnis Alexander G, Thomas Quigley, John WalleyMethod and system for a networked self-configuring communication device utilizing user preference information
    US-2008178300-A1July 24, 2008Research In Motion LimitedSelectively wiping a remote device
    US-7460837-B2December 02, 2008Cisco Technology, Inc.User interface and time-shifted presentation of data in a system that monitors activity in a shared radio frequency band
    US-2007033197-A1February 08, 2007Contigo Mobility Inc.Providing and receiving network access
    US-2007140113-A1June 21, 2007Sbc Knowledge Ventures L.P.Method for providing quality-of-service based services in a packet network
    US-8005988-B2August 23, 2011Oracle International CorporationBest effort seamless network switch in a media streaming session
    US-7317699-B2January 08, 2008Research In Motion LimitedSystem and method for controlling configuration settings for mobile communication devices and services
    US-6839340-B1January 04, 2005Bell Atlantic Network ServicesNetwork session management
    US-2009197612-A1August 06, 2009Arto KiiskinenMobile telephone location application
    US-8194581-B1June 05, 2012Cellco PartnershipAccount holder notification for an infracting mobile station or mobile directory number (MDN)
    WO-9858505-A1December 23, 1998Sonera OyjProcede de facturation dans un systeme de telecommunication mobile
    US-6748437-B1June 08, 2004Sun Microsystems, Inc.Method for creating forwarding lists for cluster networking
    US-2005060525-A1March 17, 2005Schwartz James A., Plante Stephane G., Nelson Robert B.Language for performing high level actions using hardware registers
    US-6574465-B2June 03, 2003Traq Wireless, Inc.System and method for determining optimal wireless communication service plans
    US-2010284327-A1November 11, 2010Gyorgy MiklosPolicy Enforcement Within an IP Network
    US-9413546-B2August 09, 2016The Boeing CompanyQOS provisioning in a network having dynamic link states
    US-9014973-B2April 21, 2015At&T Intellectual Property I, L.P.Methods for obtaining a navigation track between a first and a second location at a client device using location information obtained from a server device and related devices and computer program products
    US-6401113-B2June 04, 2002Research In Motion LimitedSystem and method for pushing information from a host system to a mobile data communication device
    US-7177919-B1February 13, 2007Cisco Technology, Inc.Method and system for controlling tasks on network cards
    US-2007055694-A1March 08, 2007Customer Feedback Solutions, Inc.System and method for providing a unified customer feedback solution
    US-2003229900-A1December 11, 2003Richard ReismanMethod and apparatus for browsing using multiple coordinated device sets
    US-2009006200-A1January 01, 2009Kajeet, Inc.System and methods for managing the utilization of a communications device
    US-8898748-B2November 25, 2014Mobile Iron, Inc.Remote verification for configuration updates
    US-7668176-B2February 23, 2010Alcatel-Lucent Usa Inc.Universal mobile telecommunications system (UMTS) quality of service (QoS) supporting variable QoS negotiation
    US-8484327-B2July 09, 2013Mcafee, Inc.Method and system for generic real time management of devices on computers connected to a network
    US-8396458-B2March 12, 2013Headwater Partners I LlcAutomated device provisioning and activation
    US-2002120370-A1August 29, 2002Gopal Parupudi, Evans Stephen S., Reus Edward F.Context-aware systems and methods, location-aware systems and methods, context-aware vehicles and methods of operating the same, and location-aware vehicles and methods of operating the same
    US-8503455-B2August 06, 2013Alcatel LucentMethod for forwarding packets a related packet forwarding system, a related classification device and a related popularity monitoring device
    US-8380247-B2February 19, 2013Varia Holdings LlcWireless mobile phone with authenticated mode of operation including heart beat profile based authentication
    US-8531954-B2September 10, 2013Centurylink Intellectual Property LlcSystem and method for handling reservation requests with a connection admission control engine
    US-6148336-ANovember 14, 2000Deterministic Networks, Inc.Ordering of multiple plugin applications using extensible layered service provider with network traffic filtering
    US-5933778-AAugust 03, 1999At&T Wireless Services Inc.Method and apparatus for providing telecommunication services based on a subscriber profile updated by a personal information manager
    US-8370483-B2February 05, 2013Daintree Networks, Pty. Ltd.Network analysis system and method
    US-7110753-B2September 19, 2006Siemens Communications, Inc.Remotely controllable wireless device
    US-8255534-B2August 28, 2012Juniper Networks, Inc.Policy analyzer
    US-6578076-B1June 10, 2003Intel CorporationPolicy-based network management system using dynamic policy generation
    US-6751296-B1June 15, 2004Motorola, Inc.System and method for creating a transaction usage record
    US-8233883-B2July 31, 2012Swisscom AgMethod and system for peer-to-peer enforcement
    US-8184530-B1May 22, 2012Sprint Communications Company L.P.Providing quality of service (QOS) using multiple service set identifiers (SSID) simultaneously
    US-6662014-B1December 09, 2003Sbc Properties, L.P.Location privacy manager for a wireless communication device and method therefor
    US-8631428-B2January 14, 2014Charles Scott, Ankur Mukerji, Scott WhiteSystem and method for displaying media usage
    US-7890111-B2February 15, 2011Embarq Holdings Company, LlcSystem and method for virtual wireless roaming
    US-2005055309-A1March 10, 2005Dwango North AmericaMethod and apparatus for a one click upgrade for mobile applications
    US-2007060200-A1March 15, 2007Adam Boris, Mcfarland DanielSubscriber Identity Module Card
    US-8539561-B2September 17, 2013International Business Machines CorporationSystems and methods to control device endpoint behavior using personae and policies
    US-7620041-B2November 17, 2009Alcatel-Lucent Usa Inc.Authentication mechanisms for call control message integrity and origin verification
    US-8811991-B2August 19, 2014Qualcomm IncorporatedWireless handoffs between multiple wireless networks
    US-7661124-B2February 09, 2010Microsoft CorporationRule-driven specification of web service policy
    US-6829596-B1December 07, 2004Steve FrazeeAccount/asset activation device and method
    US-2008064367-A1March 13, 2008Mformation Technologies Inc.System and method to enable subscriber self-activation of wireless data terminals
    US-8195153-B1June 05, 2012Emc CorporationMobile access to backup and recovery services
    WO-2005083934-A1September 09, 2005Research In Motion LimitedSysteme et procede de communication asynchrone avec des services web comprenant l'utilisation d'ensembles de definitions de messages
    US-8194553-B2June 05, 2012International Business Machines CorporationNetwork system, traffic balancing method, network monitoring device and host
    US-7002920-B1February 21, 2006Verizon Laboratories Inc.Capacity enhancement for multi-code CDMA with integrated services through quality of service and admission control
    US-7930327-B2April 19, 2011International Business Machines CorporationMethod and apparatus for obtaining the absolute path name of an open file system object from its file descriptor
    US-2009257379-A1October 15, 2009Robinson Michael A, Camille Chen, Jaime TolentinoMethods and apparatus for network capacity enhancement for wireless device coexistence
    US-6081591-AJune 27, 2000Skoog; Frederick H.Signaling network gateway device and method for use in a signaling network
    US-8375128-B2February 12, 2013At&T Mobility Ii LlcMethods and apparatuses for providing communications services in connection with a communications network
    US-7617516-B2November 10, 2009At&T Intellectual Property I, L.P.Methods and systems for providing video on demand over a communication network using managed quality of service, bandwidth allocation and/or user profiles
    US-8095112-B2January 10, 2012Palo Alto Research Center IncorporatedAdjusting security level of mobile device based on presence or absence of other mobile devices nearby
    US-8526329-B2September 03, 2013Broadcom CorporationHierarchical communication system providing intelligent data, program and processing migration
    US-7957381-B2June 07, 2011Commissariat A L'energie AtomiqueGlobally asynchronous communication architecture for system on chip
    US-7180855-B1February 20, 2007At&T Corp.Service interface for QoS-driven HPNA networks
    US-8116223-B2February 14, 2012Ivt Technology Inc.System and method for supporting automatic establishing and disconnecting several wireless connections
    US-2004107360-A1June 03, 2004Zone Labs, Inc.System and Methodology for Policy Enforcement
    US-8229394-B2July 24, 2012Sony Ericsson Mobile Communications AbMethods, devices and computer program products for tracking usage of a network by a plurality of users of a mobile phone
    US-8385975-B2February 26, 2013Qualcomm IncorporatedContext-based messaging for wireless communication
    US-6418147-B1July 09, 2002Globalstar LpMultiple vocoder mobile satellite telephone system
    US-2006026679-A1February 02, 2006Zakas Phillip HSystem and method of characterizing and managing electronic traffic
    US-8364806-B2January 29, 2013Nomadix, Inc.Systems and methods for providing content and services on a network system
    US-7945945-B2May 17, 2011Enterasys Networks, Inc.System and method for address block enhanced dynamic network policy management
    US-5889477-AMarch 30, 1999Mannesmann AktiengesellschaftProcess and system for ascertaining traffic conditions using stationary data collection devices
    US-2009217364-A1August 27, 2009Patrik Mikael Salmela, Vesa Petteri Lehtovirta, Kristian SlavovMethod and Apparatus for Managing Subscription Credentials in a Wireless Communication Device
    US-7730123-B1June 01, 2010At&T Intellectual Property Ii, LpSoftware application implemented using services from a services repository generated using a target services roadmap
    US-8185088-B2May 22, 2012At&T Mobility Ii LlcMobile device leasing with customized operational features
    US-7395244-B1July 01, 2008Symantec CorporationCriticality classification system and method
    US-8509082-B2August 13, 2013Centurylink Intellectual Property LlcSystem and method for load balancing network resources using a connection admission control engine
    US-8270955-B2September 18, 2012Jumptap, Inc.Presentation of sponsored content on mobile device based on transaction event
    US-2008059474-A1March 06, 2008Blue JungleDetecting Behavioral Patterns and Anomalies Using Activity Profiles
    US-6058434-AMay 02, 2000Acuity Imaging, LlcApparent network interface for and between embedded and host processors
    US-8174378-B2May 08, 2012Richman Technology CorporationHuman guard enhancing multiple site security system
    US-7886047-B1February 08, 2011Sprint Communications Company L.P.Audience measurement of wireless web subscribers
    US-8635164-B2January 21, 2014Starpound Corporation, Inc.Telecommunications initiated internet link system
    US-5915008-AJune 22, 1999Bell Atlantic Network Services, Inc.System and method for changing advanced intelligent network services from customer premises equipment
    CN-101183958-AMay 21, 2008华为技术有限公司Charging control method, charging center and related equipment
    US-2011019574-A1January 27, 2011Szabolcs Malomsoky, Daniel Orincsay, Geza SzaboTechnique for classifying network traffic and for validating a mechanism for classifying network traffic
    US-7676673-B2March 09, 2010Bae Systems Information And Electronic Systems Integration Inc.Multi-level secure (MLS) information network
    US-6477670-B1November 05, 2002Nortel Networks LimitedData link layer quality of service for UMTS
    US-8315718-B2November 20, 2012General Electric CompanyControl systems and methods of providing the same
    US-6317584-B1November 13, 2001Nortel Networks LimitedControlling communication in wireless and satellite networks
    US-7720505-B2May 18, 2010Marvell World Trade Ltd.Personal lifestyle device
    US-7546460-B2June 09, 2009Oracle International CorporationSecure communications across multiple protocols
    US-8204505-B2June 19, 2012Qualcomm IncorporatedManaging network-initiated quality of service setup in mobile device and network
    US-7336960-B2February 26, 2008Cisco Technology, Inc.Method and apparatus for balancing wireless access based on centralized information
    US-6901440-B1May 31, 2005Agilent Technologies, Inc.System and method for universal service activation
    US-6035281-AMarch 07, 2000International Business Machines CorporationSystem and method of multiparty billing for Web access
    US-8514927-B2August 20, 2013Texas Instruments IncorporatedCompression code for transferring rate matched data between devices
    US-7936736-B2May 03, 2011Proctor Jr James Arthur, Proctor Iii James ArthurEnforcing policies in wireless communication using exchanged identities
    US-2008320497-A1December 25, 2008Nokia CorporationService mobility for composed components
    US-2010188992-A1July 29, 2010Gregory G. RaleighService profile management with user preference, adaptive policy, network neutrality and user privacy for intermediate networking devices
    US-2011241624-A1October 06, 2011Kookmin University Industry Academy Cooperation FoundationHysteresis switch and electricity charging module using the same
    US-7685530-B2March 23, 2010T-Mobile Usa, Inc.Preferred contact group centric interface
    US-2009132860-A1May 21, 2009Inventec CorporationSystem and method for rapidly diagnosing bugs of system software
    US-2008147454-A1June 19, 2008Walker Robert L, Graboske Benjamin C, Livermore George SMethod and apparatus for detecting fraudulent loans
    US-8489110-B2July 16, 2013At&T Intellectual Property I, L.P.Privacy control of location information
    US-8544105-B2September 24, 2013Qualcomm IncorporatedMethod and apparatus for managing policies for time-based licenses on mobile devices
    US-5594777-AJanuary 14, 1997Telecom Finland OyWireless private branch exchange system for use with mobile communication devices
    US-2006143098-A1June 29, 2006Research In Motion LimitedSystem and method for service activation in mobile network billing
    US-2007104126-A1May 10, 2007Cisco Technology, Inc.Method for optimized layer 2 roaming and policy enforcement in a wireless environment
    US-2009077622-A1March 19, 2009Marc Baum, Dawes Paul J, Mike Kinney, Reza Raji, David Swenson, Aaron WoodSecurity Network Integrated With Premise Security System
    US-7792708-B2September 07, 2010T-Mobile Usa, Inc.Digital frame having wireless communication capability
    US-8291238-B2October 16, 2012Intertrust Technologies Corp.Systems and methods for secure transaction management and electronic rights protection
    US-7940685-B1May 10, 2011At&T Intellectual Property Ii, LpMethod and apparatus for monitoring a network
    US-7529204-B2May 05, 2009Wi-Lan, Inc.Adaptive call admission control for use in a wireless communication system
    US-2007234402-A1October 04, 2007Hormuzd Khosravi, David Durham, Karanvir GrewalHierarchical trust based posture reporting and policy enforcement
    US-2004225898-A1November 11, 2004Frost D. Gabriel, Miller David D.System and method for ubiquitous network access
    US-2006183462-A1August 17, 2006Nokia CorporationManaging an access account using personal area networks and credentials on a mobile device
    US-7039403-B2May 02, 2006Wong Gregory AMethod and apparatus to manage a resource
    US-7685131-B2March 23, 2010International Business Machines CorporationWeb services database cluster architecture
    US-7610396-B2October 27, 2009United States Cellular CorporationSystem and method for measuring and recording latency in internet protocol networks
    US-5633484-AMay 27, 1997Motorola, Inc.Method and apparatus for personal attribute selection and management using a preference memory
    US-6631122-B1October 07, 2003Nortel Networks LimitedMethod and system for wireless QOS agent for all-IP network
    US-2007297378-A1December 27, 2007Nokia CorporationSelection Of Access Interface
    US-2010325420-A1December 23, 2010Tushar KanekarSystems and methods for handling ssl session not reusable across multiple cores
    US-6965872-B1November 15, 2005Zipandshop LlcSystems, methods and computer program products for facilitating the sale of commodity-like goods/services
    US-2013058274-A1March 07, 2013Wefi Inc.Method and system for accessing wireless networks
    US-2011013569-A1January 20, 2011Wefi, Inc.System and Method of Automatically Connecting A Mobile Communication Device to A Network using A Communications Resource Database
    US-2010197268-A1August 05, 2010Headwater Partners I LlcEnhanced roaming services and converged carrier networks with device assisted services and a proxy
    US-5754953-AMay 19, 1998Motorola, Inc.Method and apparatus for assisting a user to activate service for a subscriber unit in a messaging system
    US-8331293-B2December 11, 2012Intel CorporationQuality of service resource negotiation
    US-7944948-B2May 17, 2011At&T Intellectual Property Ii, L.P.Broadband network with enterprise wireless communication system for residential and business environment
    US-8331223-B2December 11, 2012Packeteer, Inc.Method and system for controlling network traffic within the same connection with different packet tags by varying the policies applied to a connection
    US-8601125-B2December 03, 2013Huawei Technologies Co., Ltd.Service processing method and system, and policy control and charging rules function
    US-2009157792-A1June 18, 2009Trevor FiatalContent delivery to a mobile device from a content service
    US-8572117-B2October 29, 2013Theodore S. RappaportClearinghouse system and method for gaining access to use properties for carrier-based services
    US-8010082-B2August 30, 2011Seven Networks, Inc.Flexible billing architecture
    US-2010167696-A1July 01, 2010Christopher David Smith, David Kruis, Kline Robert V NDevice-based network service provisioning
    US-2011145920-A1June 16, 2011Lookout, IncSystem and method for adverse mobile application identification
    US-8315198-B2November 20, 2012Accenture Global Services LimitedMobile provisioning tool system
    US-7889384-B2February 15, 2011International Business Machines CorporationMethod for more efficiently managing complex payloads in a point of sale system
    US-7853255-B2December 14, 2010Broadcom CorporationDigital personal assistance via a broadband access gateway
    US-2003004937-A1January 02, 2003Jukka-Pekka Salmenkaita, Antti SorvariMethod and business process to maintain privacy in distributed recommendation systems
    US-8291439-B2October 16, 2012Convergys Information Management Group, Inc.Data platform web services application programming interface
    US-8059530-B1November 15, 2011GlobalFoundries, Inc.System and method for controlling network access
    US-7987510-B2July 26, 2011Rovi Solutions CorporationSelf-protecting digital content
    US-8504032-B2August 06, 2013At&T Intellectual Property I, L.P., At&T Mobility Ii LlcFemtocell service registration, activation, and provisioning
    US-2008293395-A1November 27, 2008Motorola, Inc.Using downloadable specifications to render a user interface on a mobile device
    US-8589541-B2November 19, 2013Headwater Partners I LlcDevice-assisted services for protecting network capacity
    US-8315593-B2November 20, 2012Verizon Business Global LlcMethod for billing in a telecommunications network
    US-7978627-B2July 12, 2011At&T Intellectual Property I, L.P.Systems and methods to monitor communications to identify a communications problem
    US-7849477-B2December 07, 2010Invidi Technologies CorporationAsset targeting system for limited resource environments
    US-2010027469-A1February 04, 2010At&T Mobility Ii Llc, At&T Intellectual Property I, L.P.Point of sales and customer support for femtocell service and equipment
    US-7428750-B1September 23, 2008Microsoft CorporationManaging multiple user identities in authentication environments
    US-2003184793-A1October 02, 2003Pineau Richard A.Method and apparatus for uploading content from a device to a remote network location
    US-2011277019-A1November 10, 2011Pritchard Jr John RussellSystem and method for secure access of a remote system
    US-8170553-B2May 01, 2012Broadcom CorporationCash card system interface module
    US-7844728-B2November 30, 2010Alcatel-Lucent Usa Inc.Packet filtering/classification and/or policy control support from both visited and home networks
    US-7266371-B1September 04, 2007Cingular Wireless Ii, LlcActivation and remote modification of wireless services in a packet network context
    US-7602746-B2October 13, 2009Cisco Technology, Inc.Method for optimized layer 2 roaming and policy enforcement in a wireless environment
    US-2003088671-A1May 08, 2003Netvmg, Inc.System and method to provide routing control of information over data networks
    WO-2010088413-A1August 05, 2010Headwater Partners I LlcEnhanced roaming services and converged carrier networks with device assisted services and a proxy
    US-8811338-B2August 19, 2014Qualcomm IncorporatedProxy mobile internet protocol (PMIP) in a multi-interface communication environment
    WO-2012047275-A1April 12, 2012Headwater Partners I LlcCommande d'accès d'entreprise et attribution de comptabilisation pour réseaux d'accès
    US-2003134650-A1July 17, 2003Rangamani Sundar, Murali Aravamudan, Naqvi Shamim A., Iyer Prakash R., Vishwanathan Kumar K., Pai Gurudutt UpendraMethod, system and apparatus for internetworking a mobile station to operate in a WWAN environment and in a WLAN environment with PBX services
    US-5630159-AMay 13, 1997Motorola, Inc.Method and apparatus for personal attribute selection having delay management method and apparatus for preference establishment when preferences in a donor device are unavailable
    US-8655357-B1February 18, 2014At&T Mobility Ii LlcSystems and methods for identifying applications on a communications device
    US-8930238-B2January 06, 2015International Business Machines CorporationPervasive symbiotic advertising system and methods therefor
    US-6658254-B1December 02, 2003At&T Corp.Method and apparatus for personalization of a public multimedia communications terminal
    US-6651101-B1November 18, 2003Cisco Technology, Inc.Method and apparatus for identifying network data traffic flows and for applying quality of service treatments to the flows
    US-7457265-B2November 25, 2008Telefonaktiebolaget Lm Ericsson (Publ)Mobility management entity for high data rate wireless communication networks
    US-2005246282-A1November 03, 2005Mats Naslund, Goran Selander, Ulf VjorkengrenMonitoring of digital content provided from a content provider over a network
    US-7181017-B1February 20, 2007David FelsherSystem and method for secure three-party communications
    US-6882718-B1April 19, 2005Bellsouth Intellectual Property Corp.Real time customer service data manipulation to allow multiple services per trigger type
    US-7945238-B2May 17, 2011Kajeet, Inc.System and methods for managing the utilization of a communications device
    US-7778643-B2August 17, 2010Qualcomm IncorporatedPower and timing control methods and apparatus
    US-8233895-B2July 31, 2012Research In Motion LimitedMethods and apparatus for use in transferring user data between two different mobile communication devices using a removable memory card
    US-8523547-B2September 03, 2013Merton W. PekrulRotary engine expansion chamber apparatus and method of operation therefor
    US-8385896-B2February 26, 2013Proxicom Wireless, LlcExchanging identifiers between wireless communication to determine further information to be exchanged or further services to be provided
    US-7450927-B1November 11, 2008At&T Corp.Interactive communication service account management system
    US-7058022-B1June 06, 2006At&T Corp.Method for managing access to networks by employing client software and a configuration protocol timeout
    US-7650137-B2January 19, 2010Apple Inc.Account information display for portable communication device
    US-2004260766-A1December 23, 2004Barros Mark A., Arboleda Diana M., Hymel James A.System for location based internet access and method therefore
    US-2005009499-A1January 13, 2005Karl KosterSystems and methods for billing a mobile wireless subscriber for fixed location service
    US-8347104-B2January 01, 2013Research In Motion LimitedSecurity interface for a mobile device
    US-7984511-B2July 19, 2011Rovi Solutions CorporationSelf-protecting digital content
    US-8504729-B2August 06, 2013Degage Limited Liability CompanyIntelligent network providing network access services (INP-NAS)
    US-7158792-B1January 02, 2007Sprint Communications Company L.P.Selecting a wireless link in a public wireless communication network
    US-6829696-B1December 07, 2004Texas Instruments IncorporatedData processing system with register store/load utilizing data packing/unpacking
    US-2008132268-A1June 05, 2008Cingular Wireless Ii, LlcDynamic quality of service adaptation in packet data communications
    US-2005048950-A1March 03, 2005Siemens AktiengesellschaftMethod and device for authenticated access of a station to local data networks in particular radio data networks
    US-7844034-B1November 30, 2010Sprint Spectrum L.P.Method and system for bridging third parties into calls
    US-2009248883-A1October 01, 2009Lalitha Suryanarayana, Mandyam Giridhar D, Bernard Christophe G, Hunter Kevin E, Noam RaffaelliApparatus and methods for managing widgets in a wireless communication environment
    US-8730842-B2May 20, 2014Jasper Wireless, Inc.Connectivity management and diagnostics for cellular data devices
    US-7797060-B2September 14, 2010Rockwell Automation Technologies, Inc.Prioritization associated with controller engine instances
    US-2008095339-A1April 24, 2008Mci Communications CorporationSystem and method for providing requested quality of service in a hybrid network
    US-2003159030-A1August 21, 2003Imetrikus, Inc.Method and system for the secure transmission of a portion of a web page over a computer network
    US-2004103193-A1May 27, 2004Pandya Suketu J., Anthony HadfieldResponse time and resource consumption management in a distributed network environment
    US-2008305793-A1December 11, 2008Gallagher Michael D, Milan Markovic, Patrick Tao, Amit KhetawatMethod and Apparatus for Exchanging User Equipment and Network Controller Capabilities in a Communication System
    US-2007220251-A1September 20, 2007Rosenberg Jonathan D, Andreasen Flemming S, Stammers Timothy PEstablishing facets of a policy for a communication session
    US-2005250508-A1November 10, 2005Microsoft CorporationVertical roaming in wireless networks through improved quality of service measures
    US-8538421-B2September 17, 2013At&T Mobility Ii LlcManagement of network technology selection and display in multi-technology wireless environments
    US-7593417-B2September 22, 2009Research In Motion LimitedHandling broadcast and multicast traffic as unicast traffic in a wireless network
    US-2007226225-A1September 27, 2007Yiu Timothy C, Wei-Chun HuMobile collaboration and communication system
    US-7948952-B2May 24, 2011Nokia CorporationControlling services in a packet data network
    US-6601040-B1July 29, 2003Usa Technologies, Inc.Electronic commerce terminal for wirelessly communicating to a plurality of communication devices
    US-7873705-B2January 18, 2011Flash Networks Ltd.System and method for identifying content service within content server
    US-2010241544-A1September 23, 2010T-Mobile Usa, Inc.Service management system that enables subscriber-driven changes to service plans
    US-2011126141-A1May 26, 2011Qualcomm IncorporatedMulti-panel electronic device
    US-8019886-B2September 13, 2011Opanga Networks Inc.Systems and methods for enhanced data delivery based on real time analysis of network communications quality and traffic
    US-6198915-B1March 06, 2001Telemac CorporationMobile phone with internal accounting
    US-2013117382-A1May 09, 2013Cellco Partnership D/B/A Verizon WirelessPush messaging platform with high scalability and high availability
    US-7043226-B2May 09, 2006Motorola, Inc.Variable expiration parameter of a wireless communication device based upon signal strength
    WO-2008099802-A1August 21, 2008Nec Corporation移動端末管理システム、ネットワーク機器及びそれらに用いる移動端末動作制御方法
    US-7797401-B2September 14, 2010Juniper Networks, Inc.Systems and methods for providing quality assurance
    US-8073721-B1December 06, 2011Computer Associates Think, Inc.Service level management
    US-7499438-B2March 03, 20092Wire, Inc.Controlling wireless access to a network
    US-7356011-B1April 08, 2008Mayfield Xi, Mayfield Xi Qualified, Mayfield Associates Fund Vi, Mayfield Principals Fund Ii, Mayfield Ix, Mayfield Associates Fund Iv, The Chip Trust Iii, The Unger-Luchsinger Family Trust, Jatotech Ventures, L.P., Jatotech Affiliates, L.P.Simplified configuration and security for networked wireless devices
    US-6678516-B2January 13, 2004Nokia CorporationMethod, system, and apparatus for providing services in a privacy enabled mobile and Ubicom environment
    US-8566236-B2October 22, 2013Enhanced Geographic LlcSystems and methods to determine the name of a business location visited by a user of a wireless device and process payments
    US-2008201266-A1August 21, 2008Huina Chua, Simon A Beddus, David RoxburghCommunications System
    US-7881697-B2February 01, 2011Kajeet, Inc.System and methods for managing the utilization of a communications device
    US-6098878-AAugust 08, 2000Ericsson Inc.Tariff management apparatus and method for communications terminals using smart cards
    US-2012101952-A1April 26, 2012Raleigh Gregory G, Alireza Raissinia, James Lavine, Jeffrey GreenSystem and Method for Providing User Notifications
    US-2006190314-A1August 24, 2006Rick HernandezMethod and system for testing of policies to determine cost savings
    US-2005079863-A1April 14, 2005Macaluso Anthony G.Over the air provisioning of mobile device settings
    US-2004021697-A1February 05, 2004Nortel Networks LimitedMultitasking graphical user interface
    US-2008109679-A1May 08, 2008Michael Wright, Peter Boucher, Gabe Nault, Merrill Smith, Jacobson Sterling K, Jonathan Wood, Robert MimsAdministration of protection of data accessible by a mobile device
    US-2007061243-A1March 15, 2007Jorey Ramer, Adam Soroca, Dennis DoughtyMobile content spidering and compatibility determination
    WO-2009008817-A1January 15, 2009Telefonaktiebolaget L M Ericsson (Publ)Congestion control in a transmission node
    US-8194572-B2June 05, 2012Motorola Mobility, Inc.Method and apparatus for increasing performance of a wireless communication system
    US-7325037-B2January 29, 2008Eastman Kodak CompanyMethod and system for client-based adaptive networking system
    WO-02067616-A1August 29, 2002Sonera OyjSystem, method and network node for providing service-specific billing in a telecommunications system
    US-2009197585-A1August 06, 2009Aaron Jeffrey AQuality of Service for Grouped Cellular Devices
    US-8863111-B2October 14, 2014Oracle International CorporationSystem and method for providing a production upgrade of components within a multiprotocol gateway
    US-2008034419-A1February 07, 2008Citrix Systems, Inc.Systems and Methods for Application Based Interception of SSL/VPN Traffic
    US-6697821-B2February 24, 2004Süccesses.com, Inc.Content development management system and method
    US-7953808-B2May 31, 2011Apple Inc.Automatic notification system and process
    US-8452858-B2May 28, 2013Novatel Wireless, Inc.Method and apparatus for loading landing page
    US-8761711-B2June 24, 2014Core Wireless Licensing S.A.R.LPre-loading data
    US-9344557-B2May 17, 2016At&T Intellectual Property I, L.P.Party information for data-capable communication device
    US-6636721-B2October 21, 2003Mobile Satellite Ventures, LpNetwork engineering/systems system for mobile satellite communication system
    US-8706863-B2April 22, 2014Apple Inc.Systems and methods for monitoring data and bandwidth usage
    US-8731519-B2May 20, 2014At&T Mobility Ii LlcMobile handset extension to a device
    US-8855620-B2October 07, 2014Mfoundry, Inc.Systems and methods for application program and application program update deployment to a mobile device
    US-8134954-B2March 13, 2012Research In Motion LimitedSystem and method for controlling configuration settings for mobile communication devices and services
    US-2004267872-A1December 30, 2004Serdy Frank Stephen, Zankar Thakkar, Ostlund John JamesProvisioning interface
    US-7580356-B1August 25, 2009Packeteer, Inc.Method and system for dynamically capturing flow traffic data
    US-6763226-B1July 13, 2004Computer Science Central, Inc.Multifunctional world wide walkie talkie, a tri-frequency cellular-satellite wireless instant messenger computer and network for establishing global wireless volp quality of service (qos) communications, unified messaging, and video conferencing via the internet
    US-8032899-B2October 04, 2011International Business Machines CorporationProviding policy-based operating system services in a hypervisor on a computing system
    US-8868725-B2October 21, 2014Kent State UniversityApparatus and methods for real-time multimedia network traffic management and control in wireless networks
    US-7647047-B2January 12, 2010Ventraq CorporationConsumer configurable mobile communication solution
    US-8385964-B2February 26, 2013Xone, Inc.Methods and apparatuses for geospatial-based sharing of information by multiple devices
    US-8145194-B2March 27, 2012Panasonic CorporationWireless device monitoring system including unauthorized apparatus and authentication apparatus with security authentication function
    US-7725570-B1May 25, 2010Computer Associates Think, Inc.Method and apparatus for component to service mapping in service level management (SLM)
    US-8374592-B2February 12, 2013Proxicom Wireless, LlcExchanging identifiers between wireless communication to determine further information to be exchanged or further services to be provided
    US-8296404-B2October 23, 2012Verizon Business Global LlcExternal processor for a distributed network access system
    US-8300575-B2October 30, 2012Telefonaktiebolaget L M Ericsson (Publ)Priority bearers in a mobile telecommunication network
    US-2005060266-A1March 17, 2005Microsoft CorporationMethod and system for limiting the use of user-specific software features
    US-7586871-B2September 08, 2009Bytemobile Network Services CorporationPlatform and method for providing data services in a communication network
    US-8484568-B2July 09, 2013Verizon Patent And Licensing Inc.Data usage monitoring per application
    US-7047276-B2May 16, 2006Inventec Tomorrow Studio CorporationMethod and system for sharing data between wired and wireless platforms
    US-8374090-B2February 12, 2013Centurylink Intellectual Property LlcSystem and method for routing data on a packet network
    US-7609700-B1October 27, 2009At&T Mobility Ii LlcQoS channels for multimedia services on a general purpose operating system platform using data cards
    US-5814798-ASeptember 29, 1998Motorola, Inc.Method and apparatus for personal attribute selection and management using prediction
    US-6920455-B1July 19, 2005Sun Microsystems, Inc.Mechanism and method for managing service-specified data in a profile service
    US-8325638-B2December 04, 2012Qualcomm IncorporatedPerforming packet flow optimization with policy and charging control
    US-7826607-B1November 02, 2010At & T Intellectual Property Ii, L.P.Devices, systems, and methods for migration scheduling
    US-8098579-B2January 17, 2012Embarq Holdings Company, LPSystem and method for adjusting the window size of a TCP packet through remote network elements
    US-7043268-B2May 09, 2006Axesstel, Inc.Wireless modem processor
    US-6763000-B1July 13, 2004Agilent Technologies, Inc.Monitoring ATM traffic load by quality of service type
    US-7620162-B2November 17, 2009At&T Intellectual Property I.L.P.Methods, systems and computer program products for monitoring service usage
    US-2005097516-A1May 05, 2005Microsoft CorporationExtensible and dynamically-configurable problem-reporting client
    US-2010042675-A1February 18, 2010Hitachi, Ltd.Request processing method and computer system
    US-2005245241-A1November 03, 2005Terry Durand, Fulvio CenciarelliMobile advertising and directory assistance
    US-7283963-B1October 16, 2007Bevocal, Inc.System, method and computer program product for transferring unregistered callers to a registration process
    US-6873988-B2March 29, 2005Check Point Software Technologies, Inc.System and methods providing anti-virus cooperative enforcement
    US-8437734-B2May 07, 2013Centurylink Intellectual Property LlcSystem and method for providing contact information of a mobile device to a reverse 911 database
    US-8369274-B2February 05, 2013Sony CorporationCommunication system, communication device, program and communication control method
    US-8363799-B2January 29, 2013At&T Intellectual Property I, L.P.Party information for data-capable communication device
    US-7222190-B2May 22, 2007Internap Network Services CorporationSystem and method to provide routing control of information over data networks
    US-8213296-B2July 03, 2012Verizon Patent And Licensing Inc.Link aggregation protection
    US-7373179-B2May 13, 2008At&T Mobility Ii LlcCall queue in a wireless device
    US-6532235-B1March 11, 2003Qwest Communication Int'l., Inc.Method and tool for calculating impact of voice traffic on fast packet networks
    US-7409569-B2August 05, 2008Dartdevices CorporationSystem and method for application driven power management among intermittently coupled interoperable electronic devices
    US-8280351-B1October 02, 2012Cellco PartnershipAutomatic device authentication and account identification without user input when application is started on mobile station
    US-6765864-B1July 20, 2004Cisco Technology, Inc.Technique for providing dynamic modification of application specific policies in a feedback-based, adaptive data network
    US-7903553-B2March 08, 2011Huawei Technologies Co., Ltd.Method, apparatus, edge router and system for providing QoS guarantee
    US-7496652-B2February 24, 2009Teleservices Solutions, Inc.Intelligent network providing network access services (INP-NAS)
    WO-2008080430-A1July 10, 2008Telecom Italia S.P.A.Procédé et système de mise en application de politiques de sécurité dans des réseaux mobiles ad hoc
    US-7324447-B1January 29, 2008Packeteer, Inc.Methods, apparatuses and systems facilitating concurrent classification and control of tunneled and non-tunneled network traffic
    US-7512128-B2March 31, 2009Sun Microsystems, Inc.System and method for a multi-packet data link layer data transmission
    US-2004203833-A1October 14, 2004Dale F. Rathunde, Antonio J. M. RansomMethod and apparatus for stable call preservation
    US-8520595-B2August 27, 2013Cisco Technology, Inc.Routing to the access layer to support mobility of internet protocol devices
    US-7418253-B2August 26, 2008Telefonaktiebolaget Lm Ericsson (Publ)Method, security system control module and policy server for providing security in a packet-switched telecommunications system
    US-8155666-B2April 10, 2012Skyhook Wireless, Inc.Methods and systems for determining location using a cellular and WLAN positioning system by selecting the best cellular positioning system solution
    US-8605691-B2December 10, 2013Koninklijke Philips N.V.Enhanced site report by low latency roaming by passive scanning in IEEE 802.11 networks
    US-2006085543-A1April 20, 2006Airdefense, Inc.Personal wireless monitoring agent
    US-2004098715-A1May 20, 2004Parixit Aghera, Alan Bok, Chintada Suresh Kumar, Rao Sudharshana Madhara, Antonella RinaldiOver the air mobile device software management
    US-2009047989-A1February 19, 2009Questox CorporationCellular notebook
    CN-101127988-AFebruary 20, 2008中兴通讯股份有限公司一种交互式设备管理的方法
    US-6574321-B1June 03, 2003Sentry Telecom Systems Inc.Apparatus and method for management of policies on the usage of telecommunications services
    US-2008222692-A1September 11, 2008Sony Ericsson Mobile Communications AbDevice-initiated security policy
    US-2012155296-A1June 21, 2012Cellco Partnership D/B/A Verizon WirelessIntelligent automated data usage upgrade recommendation
    US-2010318652-A1December 16, 2010Kent State UniversityApparatus and methods for real-time multimedia network traffic management & control in wireless networks
    US-2008256593-A1October 16, 2008Microsoft CorporationPolicy-Management Infrastructure
    US-2007298764-A1December 27, 2007At&T Mobility Ii LlcMobile Device Notification with Options
    US-7113997-B2September 26, 2006Motorola, Inc.Method and device for providing more accurate subscriber billing
    US-7574731-B2August 11, 2009Koolspan, Inc.Self-managed network access using localized access management
    US-2007213054-A1September 13, 2007Samsung Electronics Co., Ltd.Method and system for providing billing information of wireless data communication service
    US-7564799-B2July 21, 2009Intermec Ip Corp.System and method for providing seamless roaming
    US-8224773-B2July 17, 2012Amazon Technologies, Inc.Mining of user event data to identify users with common interests
    US-7747699-B2June 29, 2010Prueitt James K, Pineau Richard A, Bernier Kevin F, Lynton Todd M, Wicker Scott DMethod and system for generating a permanent record of a service provided to a mobile device
    US-2005096024-A1May 05, 2005Sbc Knowledge Ventures, L.P.System and method of transitioning between cellular and voice over internet protocol communication
    US-8095124-B2January 10, 2012Verizon Patent And Licensing Inc.Systems and methods for managing and monitoring mobile data, content, access, and usage
    US-7882029-B2February 01, 2011Hewlett-Packard Development Company, L.P.Centralized billing credit system utilizing a predetermined unit of usage
    US-8195661-B2June 05, 2012Umber SystemsMethod and apparatus for storing data on application-level activity and other user information to enable real-time multi-dimensional reporting about user of a mobile data network
    US-2009046707-A1February 19, 2009Smires Daniel T, Mary Grikas, Deepak OtturApparatus for enhanced information display in end user devices of a packet-based communication network
    US-2005186948-A1August 25, 2005Gallagher Michael D., Baranowski Joseph G., Jlanxiong Shi, Milan Markovle, Rajeev GuptaApparatus and method for extending the coverage area of a licensed wireless communication system using an unlicensed wireless communication system
    US-8412798-B1April 02, 2013Frank C. WangContent delivery system and method
    US-8214536-B2July 03, 2012Research In Motion LimitedMethods and apparatus for selecting a wireless network based on quality of service (QoS) criteria associated with an application
    US-2005183143-A1August 18, 2005Anderholm Eric J., Losen David R.Methods and systems for monitoring user, application or device activity
    US-7068600-B2June 27, 2006Harris CorporationTraffic policing in a mobile ad hoc network
    US-7486658-B2February 03, 2009Cisco Technology, Inc.Method and system for media synchronization in QoS-enabled wireless networks
    US-2009006116-A1January 01, 2009Kajeet, Inc.Feature management of a communication device
    JP-2006155263-AJune 15, 2006Nec Corp, 日本電気株式会社One-time id authentication system, authentication server, conversion server, one-time id authentication method, and program
    US-2009288140-A1November 19, 2009At&T Mobility Ii LlcAccess control lists and profiles to manage femto cell coverage
    US-2006035631-A1February 16, 2006Christopher White, Cannon James LWireless device service activation from the wireless device
    US-8719423-B2May 06, 2014Apple Inc.Dynamic network transport selection
    US-6885997-B1April 26, 2005Teligistics.ComApparatus and method for comparing rate plans on a net-net basis
    US-8155155-B1April 10, 2012At&T Intellectual Property Ii, L.P.Computer readable medium with embedded instructions for providing communication services between a broadband network and an enterprise wireless communication platform within a residential or business environment
    US-8099077-B2January 17, 2012Ultra Proizvodnja Elektronskih Naprav D.O.O.Customer identification and authentication procedure for online internet payments using mobile phone
    US-7318111-B2January 08, 2008Research In Motion LimitedMethods and apparatus for selecting a wireless network based on quality of service (QoS) criteria associated with an application
    US-7313237-B2December 25, 2007Microsoft CorporationMethods and systems for providing variable rates of service for accessing networks, methods and systems for accessing the internet
    WO-2008051379-A2May 02, 2008Verizon Services Corp.Système et procédé de gestion et de contrôle de données mobiles, de contenu, d'accès et d'utilisation
    US-2008160958-A1July 03, 2008United States Cellular CorporationApplication access control in a mobile environment
    US-6570974-B1May 27, 2003At&T Corp.Cable connected network server platform for telephone white-yellow page services and emergency 911 location identification
    US-7391724-B2June 24, 2008Spyder Navigations, L.L.C.System and method with policy control function for multimedia broadcast/multicast system services
    US-7149521-B2December 12, 2006Winphoria Networks, Inc.Method, system and apparatus for providing mobility management of a mobile station in WLAN and WWAN environments
    US-8264965-B2September 11, 2012Alcatel LucentIn-band DPI application awareness propagation enhancements
    US-6967958-B2November 22, 2005Fujitsu LimitedCommunication-status notification apparatus for communication system, communication-status display apparatus, communication-status notification method, medium in which communication-status notification program is recorded and communication apparatus
    US-7545782-B2June 09, 2009Belair Networks, Inc.Mobile station traffic routing
    US-2007168499-A1July 19, 2007Acenet Technology Inc.Configurable Modular Networking System and Method Thereof
    US-2005266880-A1December 01, 2005Gupta Vivek G, Christian Maciocco, Bell Carol A, Fenger Russell J, Hegde Shriharsha S, Kulkarni Amol AOpen and extensible framework for ubiquitous radio management and services in heterogeneous wireless networks
    US-2007101426-A1May 03, 2007Samsung Electronics Co., Ltd.Device function restricting method and system in specific perimeters
    US-2007019670-A1January 25, 2007Eric FalardeauMobile connectivity solution
    US-2009006229-A1January 01, 2009Embarq Holdings Company, LlcSystem and method for telephony billing codes
    US-7802724-B1September 28, 2010Steven Paul NohrIdentifications and communications methods
    US-8174970-B2May 08, 2012At&T Intellectual Property I, L.P.Methods of implementing dynamic QoS and/or bandwidth provisioning and related data networks, data service providers, routing gateways, and computer program products
    US-7353533-B2April 01, 2008Novell, Inc.Administration of protection of data accessible by a mobile device
    US-2004243680-A1December 02, 2004Georg MayerSystem, apparatus, and method for providing multi-application support using a single protocol stack
    US-2008168523-A1July 10, 2008Prodea Systems, Inc.System And Method To Acquire, Aggregate, Manage, And Distribute Media
    US-8090616-B2January 03, 2012Proctor Jr James Arthur, Proctor Iii James ArthurVisual identification information used as confirmation in a wireless communication
    US-7720960-B2May 18, 2010Cisco Technology, Inc.Method and apparatus providing prepaid billing for network services using explicit service authorization in an access server
    WO-2006012610-A2February 02, 2006Citrix Systems, Inc.Systemes et procedes d'optimisation des communications entre des noeuds de reseaux
    US-2003182435-A1September 25, 2003Digital Doors, Inc.Data security system and method for portable device
    US-7069248-B2June 27, 2006Swisscom Mobile AgMethod for confirming transactions
    US-8213363-B2July 03, 2012At&T Mobility Ii LlcQoS channels for multimedia services on a general purpose operating system platform using data cards
    US-8122249-B2February 21, 2012Siemens Enterprise Communications Gmbh & Co. KgMethod and arrangement for providing a wireless mesh network
    US-7627314-B2December 01, 2009At&T Mobility Ii LlcCall handling scheme to reduce roaming charges
    US-8200818-B2June 12, 2012Check Point Software Technologies, Inc.System providing internet access management with router-based policy enforcement
    US-7941184-B2May 10, 2011Dell Products L.P.Methods and systems for managing and/or tracking use of subscriber identity module components
    US-2004170191-A1September 02, 2004Microsoft CorporationVertical roaming in wireless networks through improved quality of service measures
    WO-03017063-A2February 27, 2003Apogee NetworksSettlement of transactions subject to multiple pricing plans
    US-2010075666-A1March 25, 2010Neil Robert GarnerCommunication system
    US-6959393-B2October 25, 2005Threat Guard, Inc.System and method for secure message-oriented network communications
    US-7310424-B2December 18, 2007General AtomicsEncryption key distribution and network registration system, apparatus and method
    US-7290283-B2October 30, 2007Lancope, Inc.Network port profiling
    US-8320949-B2November 27, 2012Juniper Networks, Inc.Wireless load balancing across bands
    US-8060463-B1November 15, 2011Amazon Technologies, Inc.Mining of user event data to identify users with common interests
    US-7734784-B1June 08, 2010Juniper Networks, Inc.Dynamic service activation using COPS-PR to support outsourcing and configuration models for policy control
    US-8787249-B2July 22, 2014Qualcomm IncorporatedMobile IP multiple registrations and PCC interactions
    US-8126722-B2February 28, 2012Verizon Business Global LlcApplication infrastructure platform (AIP)
    US-8626115-B2January 07, 2014Headwater Partners I LlcWireless network service interfaces
    US-8495227-B2July 23, 2013International Business Machines CorporationMethod and system to distribute policies
    US-8131840-B1March 06, 2012Packet Plus, Inc.Systems and methods for data stream analysis using embedded design logic
    US-7644151-B2January 05, 2010Lancope, Inc.Network service zone locking
    US-2010195503-A1August 05, 2010Headwater Partners I LlcQuality of service for device assisted services
    US-2001053694-A1December 20, 2001Fujitsu LimitedNetwork system with dynamic service profile updating functions
    US-6397259-B1May 28, 2002Palm, Inc.Method, system and apparatus for packet minimized communications
    US-8265004-B2September 11, 2012Microsoft CorporationTransferring data using ad hoc networks
    US-7113780-B2September 26, 2006Aircell, Inc.System for integrating an airborne wireless cellular network with terrestrial wireless cellular networks and the public switched telephone network
    US-2008130656-A1June 05, 2008Hyung-Sub Kim, Yeong-Jin Kim, Yeon-Seung ShinApparatus and method for managing quality of service in integrated network of heterogeneous mobile network
    US-2007255848-A1November 01, 2007Pat Sewall, Dave JohnsonEmbedded DNS
    US-2005266825-A1December 01, 2005Steve ClaytonMobile device notification with options
    US-6757717-B1June 29, 2004Proxyconn, Inc.System and method for data access
    US-5794142-AAugust 11, 1998Nokia Mobile Phones LimitedMobile terminal having network services activation through the use of point-to-point short message service
    US-7843843-B1November 30, 2010Packeteer, Inc.Adaptive, application-aware selection of differntiated network services
    US-8107953-B2January 31, 2012Tracfone Wireless, Inc.System and method for activating services on a wireless device
    US-8165576-B2April 24, 2012Firsthand Technologies Inc.Method and system for extending services to cellular devices
    US-7949529-B2May 24, 2011Voicebox Technologies, Inc.Mobile systems and methods of supporting natural language human-machine interactions
    US-8335161-B2December 18, 2012Bridgewater Systems Corp.Systems and methods for network congestion management using radio access network congestion indicators
    US-7574509-B2August 11, 2009Fisher-Rosemount Systems, Inc.Interactive two-way collaboration in process control plants
    US-8005726-B1August 23, 2011Verizon Data Services LlcMethod and system for interactive rate plan recommender
    US-7720206-B2May 18, 2010Teoco CorporationSystem and method for intelligent data extraction for telecommunications invoices
    US-2006030306-A1February 09, 2006Kuhn Brian GGeneric activation and registration framework for wireless devices
    US-2010192212-A1July 29, 2010Gregory G. RaleighAutomated device provisioning and activation
    US-6754470-B2June 22, 2004Telephia, Inc.System and method for measuring wireless device and network usage and performance metrics
    US-8010081-B1August 30, 2011Carrier Iq, Inc.Auditing system for wireless networks
    JP-2006197137-AJuly 27, 2006Ntt Docomo Inc, 株式会社エヌ・ティ・ティ・ドコモ定額制ユーザのデータ通信規制方法、データ通信規制制御装置および携帯端末
    US-7515608-B2April 07, 2009Intel CorporationMethods and media access controller for mesh networks with adaptive quality-of-service management
    US-8571993-B2October 29, 2013Irdeto Usa, Inc.Reprogrammable security for controlling piracy and enabling interactive content
    US-2008125079-A1May 29, 2008O'neil Douglas, Stephen ShermanMethods, systems and computer products for remote monitoring and control of application usage on mobile devices
    US-2007274327-A1November 29, 2007Kari Kaarela, Kirmo Koistinen, Tervo Timo PBridging between AD HOC local networks and internet-based peer-to-peer networks
    US-2008066149-A1March 13, 2008Blue JungleAnalyzing Activity Data of an Information Management System
    US-2009271514-A1October 29, 2009Yahoo! Inc.System and method for monitoring user interaction with web pages
    US-2013144789-A1June 06, 2013Apple Inc.Method and system for managing credits via a mobile device
    US-2010071053-A1March 18, 2010Prodea Systems, Inc.Presence Status Notification From Digital Endpoint Devices Through A Multi-Services Gateway Device At The User Premises
    US-2013065555-A1March 14, 2013Kajeet, Inc.Policy management of electronic devices
    US-9282460-B2March 08, 2016Novatel Wireless, Inc.Systems and methods for controlling device network access through a wireless router
    WO-2006050758-A1May 18, 2006Telefonaktiebolaget Lm Ericsson (Publ)Ensemble, noeuds et procede concernant l'acces a des services par un systeme de communication
    US-2006034256-A1February 16, 2006Nokia CorporationSystem and method for service discovery during connection setup in a wireless environment
    WO-2006093961-A1September 08, 2006Kyocera Wireless Corp.System and method for motion sensitive roaming in a mobile communication device
    US-2009125619-A1May 14, 2009International Business Machines CorporationAutonomic definition and management of distributed appication information
    CN-101815275-AAugust 25, 2010刘泱Mobile phone charge calculating device
    US-7508799-B2March 24, 2009Arch Wireless Operating Company, Inc.Managing wireless network data
    US-2006112016-A1May 25, 2006Yoshihito IshibashiContent usage management system method, and program providing medium therefor
    WO-2004028070-A1April 01, 2004Credant Technologies, Inc.Serveur, memoire informatique et procede servant a supporter la maintenance et la distribution d'une police de securite
    US-7756056-B2July 13, 2010Electronics And Telecommunications Research Institute, Samsung Electronics Co., Ltd.Apparatus and method for managing quality of service in integrated network of heterogeneous mobile network
    US-2003188006-A1October 02, 2003Bard Steven R.Wireless LAN with dynamic channel access management
    WO-2006004784-A1January 12, 2006Japan Communications, Inc.Systeme et procede d'amelioration de l'acces au reseau
    US-7912025-B2March 22, 2011Research In Motion LimitedMethods and apparatus for processing radio modem commands during network data sessions
    US-7890084-B1February 15, 2011Cellco PartnershipEnterprise instant message aggregator
    US-2013103376-A1April 25, 2013Cellco Partnership D/B/A Verizon WirelessMultiple client simulator for push engine
    US-7792257-B1September 07, 2010Andre Denis Vanier, Dinoo Jal Vanier, Slemmer Michael W, Jawdat Faisal NMethod and system for determining gender and targeting advertising in a telephone system
    US-7627767-B2December 01, 2009At&T Intellectual Property I, L.P.Methods and systems for remotely securing data in a wireless device in a communications network
    US-8185152-B1May 22, 2012Marvell International Ltd.Access network discovery and selection and internet protocol multimedia system service architecture
    US-5325532-AJune 28, 1994Compaq Computer CorporationAutomatic development of operating system boot image
    US-6393014-B1May 21, 2002At&T Wireless Services, Inc.Method and system for providing data communication with a mobile station
    US-2013326356-A9December 05, 2013Jianyu Roy Zheng, Mark Allen Hanson, Djung NguyenSystem and method for managing wireless connections in computer
    US-2006135144-A1June 22, 2006Premkumar JothipragasamMethod and apparatus for carrier customization in communication systems
    US-8675852-B2March 18, 2014Oracle International CorporationUsing location as a presence attribute
    US-2006236095-A1October 19, 2006Smith Robert D, Wobst Olaf ASystems and methods for automatically configuring and managing network devices and virtual private networks
    US-2011195700-A1August 11, 2011Apple Inc.Method and apparatus for using a wireless communication device with multiple service providers
    US-2010153781-A1June 17, 2010Juniper Networks, Inc.Server-to-server integrity checking
    US-2010121744-A1May 13, 2010At&T Intellectual Property I, L.P.Usage data monitoring and communication between multiple devices
    EP-1887732-A1February 13, 2008Huawei Technologies Co., Ltd.A method and system for content charging
    EP-2007065-A1December 24, 2008Huawei Technologies Co., Ltd.Gebührenberechnungs-assoziationsverfahren, system, gebührenberechnungszentrale und einrichtung für einen anwendungsdienst
    US-2006258341-A1November 16, 2006Microsoft CorporationMobile internet services discovery and/or provisioning
    US-2007061878-A1March 15, 2007Microsoft CorporationCreating secure interactive connections with remote resources
    US-6934751-B2August 23, 2005Motorola, Inc.Method and device for providing more accurate subscriber device billing
    WO-2006004467-A1January 12, 2006Telefonaktiebolaget Lm Ericsson (Publ)Mecanisme de liaison pour la gestion de la qualite de service dans un reseau de communication
    US-2007130315-A1June 07, 2007John Friend, Michael Belshe, David HoffmanSystem and method for providing provisioning and upgrade services for a wireless device
    US-2013117140-A1May 09, 2013Cellco Partnership D/B/A Verizon WirelessData transport content association
    US-2010191576-A1July 29, 2010Gregory G. RaleighVerifiable device assisted service usage billing with integrated accounting, mediation accounting, and multi-account
    US-2005254435-A1November 17, 2005Moakley George P, Grobman Steven LMethod and system for selecting network connections in a multi-network environment
    US-7636626-B2December 22, 2009General Motors CompanyMethod and system for monitoring and retrieving device usage
    US-7039713-B1May 02, 2006Microsoft CorporationSystem and method of user authentication for network communication through a policy agent
    US-8483694-B2July 09, 2013Research In Motion LimitedWireless router system and method
    US-2006182137-A1August 17, 2006Hao Zhou, Sebastien Marineau-Mes, Peter Van Der Veen, Pardeep Kathail, Steve BelairFast and memory protected asynchronous message scheme in a multi-process and multi-thread environment
    US-2008263348-A1October 23, 2008Texas Instruments IncorporatedDynamic asymmetric partitioning of program code memory in network connected devices
    US-2007130283-A1June 07, 2007Sbc Knowledge Ventures LpMethod for exchanging content between communication devices
    EP-1463238-A1September 29, 2004Alcatel Alsthom Compagnie Generale D'electriciteDispositif de gestion locale de procédés d'assurance pour un équipement de réseau de communications
    US-5617539-AApril 01, 1997Vicor, Inc.Multimedia collaboration system with separate data network and A/V network controlled by information transmitting on the data network
    US-2003188117-A1October 02, 2003Kenji Yoshino, Yoshihito Ishibashi, Taizo Shirai, Masayuki TakadaData access management system and management method using access control tickert
    US-2003224781-A1December 04, 2003Milford Matthew A., Walker Iain Stuart CampbellSystem and method for establishing and controlling access to network resources
    US-8644813-B1February 04, 2014Sprint Communications Company L.P.Customer initiated mobile diagnostics service
    US-7203752-B2April 10, 2007Openwave Systems Inc.Method and system for managing location information for wireless communications devices
    US-7710932-B2May 04, 2010Motorola, Inc.Method and apparatus for encouraging routing in a network
    US-2006045245-A1March 02, 2006Aaron Jeffrey A, Jun-Gang AlinMethods, systems and computer program products for monitoring service usage
    US-2003161265-A1August 28, 2003Jingjun Cao, Fujio Watanabe, Shoji KurakakeSystem for end user monitoring of network service conditions across heterogeneous networks
    WO-02093877-A1November 21, 2002Nokia CorporationContext sensitive web services
    US-8522249-B2August 27, 2013Bluestreak Technology, Inc.Management of software implemented services in processor-based devices
    US-6928280-B1August 09, 2005Telephia, Inc.Method and system for measuring data quality of service in a wireless network using multiple remote units and a back end processor
    US-8135657-B2March 13, 2012Crossbeam Systems, Inc.Systems and methods for processing data flows
    US-7472189-B2December 30, 2008Sbc Knowledge Ventures, L.P.Method of collecting data from network elements
    US-8339991-B2December 25, 2012Meraki, Inc.Node self-configuration and operation in a wireless network
    US-8494559-B1July 23, 2013At&T Intellectual Property I, L.P.Method and system for selecting a wireless access technology using location based information
    CN-1801829-AJuly 12, 2006昆达电脑科技(昆山)有限公司移动电话时间自动校正方法
    US-7024460-B2April 04, 2006Bytemobile, Inc.Service-based compression of content within a network communication system
    WO-2004095753-A2November 04, 2004Motorola Inc.A method and apparatus for managing wireless mobile terminals
    CN-1345154-AApril 17, 2002大唐微电子技术有限公司用户识别模块的增值业务进行空中下载的方法
    US-7457870-B1November 25, 2008Packeteer, Inc.Methods, apparatuses and systems facilitating classification of web services network traffic
    US-8793304-B2July 29, 2014Microsoft CorporationDifferentiated management of wireless connectivity
    US-7752330-B2July 06, 2010International Business Machines CorporationSystem for low power operation of wireless LAN interfaces
    US-6141565-AOctober 31, 2000Metawave Communications CorporationDynamic mobile parameter optimization
    US-6038452-AMarch 14, 2000Nortel Networks CorporationTelecommunication network utilizing a quality of service protocol
    US-6505114-B2January 07, 2003Sergio LucianiTraffic monitoring system and method
    US-6725031-B2April 20, 2004Telemac CorporationMethod and system for data rating for wireless devices
    US-7817615-B1October 19, 2010Sprint Communications Company L.P.Cross-network quality-of-service verification
    US-8472371-B1June 25, 2013At&T Mobility Ii LlcRoaming support for wireless access subscriber over fixed IP access networks
    US-6792461-B1September 14, 2004International Business Machines CorporationSystem and method to manage data to a plurality of proxy servers through a router by application level protocol and an authorized list
    US-2006165060-A1July 27, 2006Robin DuaMethod and apparatus for managing credentials through a wireless network
    US-2010192170-A1July 29, 2010Gregory G. RaleighDevice assisted service profile management with user preference, adaptive policy, network neutrality, and user privacy
    US-7684370-B2March 23, 2010Research In Motion LimitedAdaptive beamforming configuration methods and apparatus for wireless access points serving as handoff indication mechanisms in wireless local area networks
    US-7024200-B2April 04, 2006Vesuvius, Inc.Communique system with active feedback for cellular communication networks
    US-8589955-B2November 19, 2013Nuance Communications, Inc.System and method for building applications, such as customized applications for mobile devices
    US-6598034-B1July 22, 2003Infineon Technologies North America Corp.Rule based IP data processing
    US-9135037-B1September 15, 2015Google Inc.Virtual network protocol
    US-7242920-B2July 10, 2007Scenera Technologies, LlcMethods, systems, and computer program products for controlling data transmission based on power cost
    US-8307067-B2November 06, 2012Guardian Data Storage, LlcProtecting encrypted files transmitted over a network
    US-2008126287-A1May 29, 2008Motorola, Inc.Method for management of policy conflict in a policy continuum
    US-2004176104-A1September 09, 2004Suzanne ArcensEnhanced user privacy for mobile station location services
    US-7369856-B2May 06, 2008Intel CorporationMethod and system to support fast hand-over of mobile subscriber stations in broadband wireless networks
    US-2010235329-A1September 16, 2010Sandisk Il Ltd.System and method of embedding second content in first content
    CN-1878160-ADecember 13, 2006华为技术有限公司一种节目交换系统
    CN-1937511-AMarch 28, 2007中兴通讯股份有限公司计费信息采集系统及采集方法和计费实现系统及实现方法
    US-8972537-B2March 03, 2015Comcast Cable Communications, LlcPrioritizing local and network traffic
    US-2007022289-A1January 25, 2007Mci, Inc.Method and system for providing secure credential storage to support interdomain traversal
    US-2011082790-A1April 07, 2011Kajeet, Inc.System and Methods for Managing the Utilization of a Communications Device
    US-2007147317-A1June 28, 2007Motorola, Inc.Method and system for providing differentiated network service in WLAN
    US-2006242685-A1October 26, 2006Credant Technologies, Inc.System and method for distribution of security policies for mobile devices
    JP-2007318354-ADecember 06, 2007Fujitsu Ten Ltd, 富士通テン株式会社Communication device for mobile and communication method for mobile
    US-8780857-B2July 15, 2014Qualcomm IncorporatedMethods and apparatus for mobility support between network domains
    US-8831561-B2September 09, 2014Seven Networks, IncSystem and method for tracking billing events in a mobile wireless network for a network operator
    US-8005913-B1August 23, 2011Network Protection Sciences, LLCControlling, filtering, and monitoring of mobile device access to the internet, data, voice, and applications
    US-2009046723-A1February 19, 2009Rahman Reshad A, Toscano David P, Sylvain Masse, Jonathan Parker, Ward David DDistinguishing between connectivity verification availability and forwarding protocol functionality in a computer network
    US-8271025-B2September 18, 2012At&T Mobility Ii LlcDevice network technology selection and display in multi-technology wireless environments
    US-8346210-B2January 01, 2013Nokia CorporationMethod and apparatus for managing services using bearer tags
    US-2010041365-A1February 18, 2010At&T Mobility Ii Llc, At&T Intellectual Property I, L.P.Mediation, rating, and billing associated with a femtocell service framework
    US-8804517-B2August 12, 2014Blackberry LimitedManagement of mobile hotspot connections
    US-8739035-B2May 27, 2014Intel CorporationControls and indicators with on-screen cognitive aids
    US-2010144310-A1June 10, 2010At&T Intellectual Property I, L.P.Methods, systems, and computer program products for generating resource utilization alerts through communication terminals
    US-2005055291-A1March 10, 2005Sbc Knowledge Ventures, L.P.Shared usage telecommunications billing system and method
    US-8355696-B1January 15, 2013Sprint Communications Company L.P.Automated device activation
    WO-0245315-A2June 06, 2002Micromuse Inc.Procede et systeme destines a predire les causes d'interruptions de service reseau au moyen d'une mise en correlation dans le domaine temporel
    US-7894431-B2February 22, 2011Research In Motion LimitedSystem and method for communicating asynchronously with web services using message set definitions
    CN-1538730-AOctober 20, 2004中兴通讯股份有限公司一种宽带公话系统及其实现方法
    US-5983270-ANovember 09, 1999Sequel Technology CorporationMethod and apparatus for managing internetwork and intranetwork activity
    US-9367680-B2June 14, 2016Lookout, Inc.System and method for mobile communication device application advisement
    US-2008162704-A1July 03, 2008United States Cellular CorporationEstablishing Network Policy For Session-Unaware Mobile-Device Applications
    US-2008298230-A1December 04, 2008Luft Siegfried J, Jonathan BackScheduling of workloads in a distributed compute environment
    US-2008316923-A1December 25, 2008Fedders Jeffrey G, Matthew Adiletta, Young Valerie JDistributing intelligence across networks
    US-2007109983-A1May 17, 2007Computer Associates Think, Inc.Method and System for Managing Access to a Wireless Network
    US-6640334-B1October 28, 2003Nortel Networks LimitedMethod and apparatus of remotely updating firmware of a communication device
    US-7609650-B2October 27, 2009Carrier Iq, Inc.Collection of data at target wireless devices using data collection profiles
    US-2003171112-A1September 11, 2003Siemens AktiengesellschaftGeneric wlan architecture
    EP-1772988-A1April 11, 2007Huawei Technologies Co., Ltd.A method, system and apparatus for realizing the data service safety of the mobile communication system
    US-8600895-B2December 03, 2013David Paul FelsherInformation record infrastructure, system and method
    US-8396929-B2March 12, 2013Sap Portals Israel Ltd.Method and apparatus for distributed application context aware transaction processing
    US-2008052387-A1February 28, 2008Heinz John M, Mcnaughton James LSystem and method for tracking application resource usage
    WO-2006120558-A1November 16, 2006Nokia CorporationServices dans un système de communication
    US-2013084835-A1April 04, 2013Wefi, Inc.Method and System for Selecting a Wireless Network for Offloading
    US-7366654-B2April 29, 2008Microsoft CorporationLearning translation relationships among words
    US-2008120688-A1May 22, 2008Chaoxin Charles Qiu, William Chorley, Diana PanekMethods and apparatus for automatic security checking in systems that monitor for improper network usage
    US-2006143066-A1June 29, 2006Hermann CalabriaVendor-driven, social-network enabled review syndication system
    US-7975184-B2July 05, 2011Donald Goff, Robert Gretta, Brower Todd MDiagnostic access system
    US-7149229-B1December 12, 2006Cisco Technology, Inc.Mobile IP accounting
    US-7236780-B2June 26, 2007Lucent Technologies Inc.Method for changing mobile subscriber service plan
    US-2006173959-A1August 03, 2006Openwave Systems Inc.Agent based application using data synchronization
    US-8402540-B2March 19, 2013Crossbeam Systems, Inc.Systems and methods for processing data flows
    US-7660419-B1February 09, 2010Texas Instruments IncorporatedSystem and method for security association between communication devices within a wireless personal and local area network
    US-8238287-B1August 07, 2012Marvell International Ltd.Method and apparatus for providing quality of service (QoS) in a wireless local area network
    US-8644702-B1February 04, 2014Xi Processing L.L.C.Computer-implemented system and method for notifying users upon the occurrence of an event
    US-2012166364-A1June 28, 2012Numenta, Inc.Hierarchical Temporal Memory (HTM) System Deployed as Web Service
    US-2008134330-A1June 05, 2008Harsh Kapoor, Moisey Akerman, Justus Stephen D, Ferguson Jc, Yevgeny Korsunsky, Gallo Paul S, Charles Ching Lee, Martin Timothy M, Chunsheng Fu, Weidong XuSystems and methods for processing data flows
    WO-2008066419-A1June 05, 2008Telefonaktiebolaget Lm Ericsson (Publ)A method and arrangement for controlling service level agreements in a mobile network.
    US-2009172077-A1July 02, 2009David Roxburgh, Capp Matthew W, Beddus Simon A, Hosking Michael RApparatus for and a Method of Delivering a Message to a User
    US-2008018494-A1January 24, 2008Waite Robert K, Juby John MTraffic Sign Beacon System
    US-7720464-B2May 18, 2010Symbol Technologies, Inc.System and method for providing differentiated service levels to wireless devices in a wireless network
    US-2002154751-A1October 24, 2002Thompson Richard H., Edward Sacharuk, Kenyon Michael John, Schoonover Molly Joy, Dhiraj Soni, William BellMethod for managing wireless communication device use including optimizing rate and service plan selection
    US-2007294395-A1December 20, 2007AlcatelService-centric communication network monitoring
    US-2004203755-A1October 14, 2004Jeffrey Brunet, Ian Collins, Stephen Kim, Yousuf ChowdharyMobile care framework
    WO-2006130960-A1December 14, 2006Mobidia, Inc.System and method of controlling a mobile device using a network policy
    CN-1567818-AJanuary 19, 2005华为技术有限公司A content charging method of data service and charging system thereof
    US-7948968-B2May 24, 2011Verizon Communications Inc., Verizon Services Corp.Network session management
    US-8015133-B1September 06, 2011Sas Institute Inc.Computer-implemented modeling systems and methods for analyzing and predicting computer network intrusions
    US-6876653-B2April 05, 2005Broadcom CorporationFast flexible filter processor based architecture for a network device
    US-8307095-B2November 06, 2012Research In Motion LimitedFirmware upgrade system and method in a device management architecture
    US-7139569-B2November 21, 2006Nec CorporationService searching system
    US-8112435-B2February 07, 2012Wififee, LlcSystem and method for modifying internet traffic and controlling search responses
    US-8032168-B2October 04, 2011Nethawk OyjMethod, apparatus and computer program product for monitoring data transmission connections
    US-2012144025-A1June 07, 2012Telefonaktiebolaget L.M. Ericsson (Publ)Method and an Arrangement For Enabling User Traffic Classification Configuration
    US-7551922-B2June 23, 2009Carrier Iq, Inc.Rule based data collection and management in a wireless communications network
    US-8255515-B1August 28, 2012Marvell Israel (M.I.S.L.) Ltd.Rate limiting per-flow of traffic to CPU on network switching and routing devices
    US-7388950-B2June 17, 2008Metro One Telecommunications, Inc.Technique for providing personalized information and communications services
    US-2007192460-A1August 16, 2007Samsung Electronics Co., Ltd.Method of providing interoperatibility of different network devices capable of error handling and network device using the same
    US-7711848-B2May 04, 2010Oracle International CorporationSystem using session initiation protocol for seamless network switching in a media streaming session
    US-2008162637-A1July 03, 2008At&T Bls Intellectual Property, Inc.Application services infrastructure for next generation networks including a notification capability and related methods and computer program products
    US-2008066181-A1March 13, 2008Microsoft CorporationDRM aspects of peer-to-peer digital content distribution
    CN-1508734-AJune 30, 2004华人创意股份有限公司用以支持中小企业营运发展的信息供应方法以及系统
    US-8880047-B2November 04, 2014Jeffrey C. Konicek, Steven G. LisaRealtime, location-based cell phone enhancements, uses, and applications
    US-7633438-B2December 15, 2009Research In Motion LimitedMethod of downloading ephemeris data based on user activity
    US-8495700-B2July 23, 2013Mcafee, Inc.Mobile data security system and methods
    US-2008085707-A1April 10, 2008Apple Inc.Dynamic Carrier Selection
    US-7965983-B1June 21, 2011Sprint Spectrum L.P.Method and system for conveying medical information to a medical service person
    US-2003018524-A1January 23, 2003Dan Fishman, Greg Buzzard, Hans Wolters, Sougata Mukherjea, Charles PaclatMethod for marketing and selling products to a user of a wireless device
    US-8065365-B2November 22, 2011Oracle International CorporationGrouping event notifications in a database system
    US-8483135-B2July 09, 2013Alcatel LucentOnline charging for sessions that are transferred between network domains
    US-8977284-B2March 10, 2015Traxcell Technologies, LLCMachine for providing a dynamic data base of geographic location information for a plurality of wireless devices and process for making same
    US-2005163320-A1July 28, 2005Brown Michael S., Adams Neil P., Brown Michael K., Kirkup Michael G., Little Herbert A.System and method for processing encoded messages for exchange with a mobile data communication device
    US-2006178917-A1August 10, 2006Xerox CorporationOffice document assessment method and system
    US-7873001-B2January 18, 2011Tango Networks, Inc.System and method for enabling VPN-less session setup for connecting mobile data devices to an enterprise data network
    US-2009013157-A1January 08, 2009Stephane BeauleManagement of Software Implemented Services in Processor-Based Devices
    US-2008184127-A1July 31, 2008Sony Corporation, Sony Electronics IncShared home media platform to support multi-user control
    US-RE44412-EAugust 06, 2013Aylus Networks, Inc.Digital home networks having a control point located on a wide area network
    US-2004249918-A1December 09, 2004Newisys, Inc.Facilitating replication of a service processor configuration
    US-2006277590-A1December 07, 2006Microsoft CorporationRemote management of mobile devices
    US-8068829-B2November 29, 2011Gogo LlcSystem for customizing electronic services for delivery to a passenger in an airborne wireless cellular network
    US-8196199-B2June 05, 2012Airdefense, Inc.Personal wireless monitoring agent
    US-9032427-B2May 12, 2015Avvasi Inc.System for monitoring a video network and methods for use therewith
    US-2008166993-A1July 10, 2008Patrice Gautier, Debbie Shimizu, Alexandrea Anderson, Eddy Cue, Monika Gromek, Kondrk Robert HMethod and system for mobile device activation
    US-2013029653-A1January 31, 2013Kajeet, Inc.Feature management of a communication device
    US-2005239447-A1October 27, 2005Microsoft CorporationAccount creation via a mobile device
    US-8019687-B2September 13, 2011Morega Systems Inc.Distributed digital rights management node module and methods for use therewith
    US-7668903-B2February 23, 2010Xerox CorporationMethod and apparatus for dynamically delivering service profiles to clients
    US-8538458-B2September 17, 2013X One, Inc.Location sharing and tracking using mobile phones or other wireless devices
    US-8943551-B2January 27, 2015Microsoft CorporationCloud-based device information storage
    US-8949597-B1February 03, 2015Sprint Communications Company L.P.Managing certificates on a mobile device
    US-7373136-B2May 13, 2008Telemac CorporationMethod and system for data rating for wireless devices
    US-8948726-B2February 03, 2015Blackberry LimitedDevice-based network service provisioning
    US-7039027-B2May 02, 2006Symbol Technologies, Inc.Automatic and seamless vertical roaming between wireless local area network (WLAN) and wireless wide area network (WWAN) while maintaining an active voice or streaming data connection: systems, methods and program products
    US-7197321-B2March 27, 2007Boston Communications Group, Inc.Method and system for providing supervisory control over wireless phone usage
    US-7746854-B2June 29, 2010Broadcom CorporationFast flexible filter processor based architecture for a network device
    US-8693323-B1April 08, 2014Verizon Business Global LlcSystem and method for managing communications in an access network
    WO-03058880-A1July 17, 2003Telia Ab (Publ)Procede de controle du droit d'acces dans le cadre de la communication mobile
    US-7102620-B2September 05, 2006Sierra Wireless, Inc.Mobile electronic device
    CN-1867024-ANovember 22, 2006华为技术有限公司Charging information transmitting method
    US-2002199001-A1December 26, 2002Storymail, Inc.System and method for conducting a secure response communication session
    US-7636574-B2December 22, 2009Alcatel-LucentAuctioning of message delivery opportunities in a location-based services system
    US-8548428-B2October 01, 2013Headwater Partners I LlcDevice group partitions and settlement platform
    WO-2007069245-A2June 21, 2007Yoggie Security Systems Ltd.System and method for providing network security to mobile devices
    US-2003220984-A1November 27, 2003Jones Paul David, Newcombe Christopher Richard, Ellis Richard Donald, Birum Derrick Jason, Thompson Mikel HowardMethod and system for preloading resources
    US-6104700-AAugust 15, 2000Extreme NetworksPolicy based quality of service
    US-5131020-AJuly 14, 1992Smartroutes Systems Limited PartnershipMethod of and system for providing continually updated traffic or other information to telephonically and other communications-linked customers
    US-6998985-B2February 14, 2006Dmatek, Ltd.Monitoring and tracking network
    US-8280354-B2October 02, 2012Research In Motion LimitedMethod and system for provisioning wireless services
    US-8219134-B2July 10, 2012Quickplay Media Inc.Seamlessly switching among unicast, multicast, and broadcast mobile media content
    US-8522337-B2August 27, 2013Intel CorporationSelecting a security format conversion for wired and wireless devices
    US-8676925-B1March 18, 2014Jiawei Liu, Shuhan JinMethod and apparatus for peer-to-peer capturing and sharing of visual information based on incentives
    US-8522039-B2August 27, 2013Apple Inc.Method and apparatus for establishing a federated identity using a personal wireless device
    US-8489720-B1July 16, 2013Blue Coat Systems, Inc.Cost-aware, bandwidth management systems adaptive to network conditions
    US-2008167033-A1July 10, 2008Telefonaktiebolaget Lm Ericsson (Publ)Method and Apparatus for Cost-Based Network Selection
    US-2007293191-A1December 20, 2007Amanullah Mir, Alan Hopson, Grace Im, Daivd Heyrich, Hema Bhavsar, Mcgrail LoriPre-paid security mechanism in a post-pay telecommunications system
    JP-2008301121-ADecember 11, 2008Kyocera Corp, 京セラ株式会社通信システム、閾値管理サーバ、無線通信装置及び通信方法
    EP-1978772-A1October 08, 2008British Telecommunications Public Limited CompanyAuthentication policy
    US-8301513-B1October 30, 2012Amazon Technologies, Inc.System, method, and computer readable medium for dynamically pricing an item based on service plan selection
    US-5577100-ANovember 19, 1996Telemac Cellular CorporationMobile phone with internal accounting
    US-2010027559-A1February 04, 2010Hung-Ming Lin, Hung-Ju Huang, Yuan Jen-Min, Ming-Chi BaiTransmission device and data extended transmission method
    US-8630314-B2January 14, 2014Faro Technologies, Inc.Method and apparatus for synchronizing measurements taken by multiple metrology devices
    US-7562213-B1July 14, 2009Cisco Technology, Inc.Approaches for applying service policies to encrypted packets
    US-8488597-B2July 16, 2013Huawei Technologies Co., Ltd.Apparatus for collecting charging information of a data service and charging method thereof
    US-7515926-B2April 07, 2009Alcatel-Lucent Usa Inc.Detection of power-drain denial-of-service attacks in wireless networks
    US-7499537-B2March 03, 2009Grape Technology Group, Inc.Technique for providing personalized information and communications services
    US-2004168052-A1August 26, 2004Clisham Allister B., Lam Han T., Balaji Lakshmanan, Luo Dexiang Edward, Praveen Kumar, Mehran ErfaniElectronic content communication system and method
    US-2003084321-A1May 01, 2003Tarquini Richard Paul, Schertz Richard Louis, Gales George SimonNode and mobile device for a mobile telecommunications network providing intrusion detection
    US-7536695-B2May 19, 2009Microsoft CorporationArchitecture and system for location awareness
    US-7719966-B2May 18, 2010Zeugma Systems Inc.Network element architecture for deep packet inspection
    US-8027339-B2September 27, 2011Nomadix, Inc.System and method for establishing network connection
    US-6654814-B1November 25, 2003International Business Machines CorporationSystems, methods and computer program products for dynamic placement of web content tailoring
    US-6546016-B1April 08, 2003At&T Corp.Coaxial cable/twisted pair cable telecommunications network architecture
    US-2010103820-A1April 29, 2010Camiant, Inc.Fair use management method and system
    US-7911975-B2March 22, 2011International Business Machines CorporationSystem and method for network flow traffic rate encoding
    US-8325906-B2December 04, 2012Cisco Technology, Inc.Class-based call request routing
    US-6542992-B1April 01, 20033Com CorporationControl and coordination of encryption and compression between network entities
    US-7322044-B2January 22, 2008Airdefense, Inc.Systems and methods for automated network policy exception detection and correction
    US-2006068796-A1March 30, 2006Millen Stephanie L, Van Leeuwen Martin HRetrieving jurisdiction information from home location register
    US-2006099970-A1May 11, 2006Morgan Scott D, Hefner Eric J, Mary Hor-Lao, Neuzil Dale S, Sharada Raghuram, Xiong Michelle HMethod and system for providing a log of mobile station location requests
    US-8131858-B2March 06, 2012Motorola Solutions, Inc.Method and devices for enabling a multi-mode device to establish a session through multiple networks
    US-8228818-B2July 24, 2012At&T Intellectual Property Ii, LpSystems, methods, and devices for monitoring networks
    US-8180886-B2May 15, 2012Trustwave Holdings, Inc.Method and apparatus for detection of information transmission abnormalities
    US-2007259673-A1November 08, 2007Telefonaktiebolaget Lm Ericsson (Publ)Inactivity monitoring for different traffic or service classifications
    US-2008039102-A1February 14, 2008Pat Sewall, Dave JohnsonHotspot Communication Limiter
    US-2009044185-A1February 12, 2009Innopath Software, Inc.Workflow-Based User Interface System for Mobile Devices Management
    WO-2004064306-A2July 29, 2004Motorola Inc. A Corporation Of The State Of DelawareProcede et appareil permettant de fournir des informations de service de reseau a une station mobile au moyen d'un reseau local sans fil
    US-2012238287-A1September 20, 2012Wefi, Inc.Method and System for Selecting A Wireless Network
    US-8102814-B2January 24, 2012Cisco Technology, Inc.Access point profile for a mesh access point in a wireless mesh network
    US-7162237-B1January 09, 2007Bellsouth Intellectual Property CorporationSystem for automatic selection of profile based on location
    US-8044792-B2October 25, 2011Hewlett-Packard Development Company, L.P.System and method for controlling remote sensors
    US-8571474-B2October 29, 2013International Business Machines CorporationPerforming routing of a phone call through a third party device
    US-6640097-B2October 28, 2003Markport LimitedWAP service personalization, management and billing object oriented platform
    US-2004102182-A1May 27, 2004Lothar Reith, Marian PutalaMethod of providing networks services
    US-8565746-B2October 22, 2013Carrier Iq, Inc.Programmable agent for monitoring mobile communication in a wireless communication network
    US-2010191846-A1July 29, 2010Gregory G. RaleighVerifiable service policy inplementation for intermediate networking devices
    US-2003050837-A1March 13, 2003Kim Do SikMethod and system providing advertisement using tone of ringing sounds of mobile phone and commerical transaction service in association with the same
    US-2007294410-A1December 20, 2007Centrisoft CorporationSoftware, systems and methods for managing a distributed network
    US-7548976-B2June 16, 2009Microsoft CorporationMethods and systems for providing variable rates of service for accessing networks, methods and systems for accessing the internet
    US-8391834-B2March 05, 2013Headwater Partners I LlcSecurity techniques for device assisted services
    US-8085808-B2December 27, 2011Verizon Services Corp.Automatic configuration of network devices for network services
    US-2007155365-A1July 05, 2007Sung-Jun Kim, Seong-Joon Jeon, Joo-Yong Park, Myeon-Kee YounSecuring quality of service (QoS) according to type of wireless local area network (WLAN) service
    US-2009048913-A1February 19, 2009Research In Motion LimitedSystem and method for facilitating targeted mobile advertisement using metadata embedded in the application content
    US-2007036312-A1February 15, 2007Lucent Technologies Inc.Converged offline charging and online charging
    US-2008225748-A1September 18, 2008Prakash Khemani, Vishal BandekarSystems and methods for providing stuctured policy expressions to represent unstructured data in a network appliance
    US-2008177998-A1July 24, 2008Shrikant Apsangi, Srinivas Guduru, Jason Kazimir Schnitzer, Markley Jeffrey P, Carlucci John B, Bevilacqua John GApparatus and methods for provisioning in a download-enabled system
    US-8350700-B2January 08, 2013Contigo Solutions, Inc.System for, and method of, monitoring the movement of mobile items
    US-7554983-B1June 30, 2009Packeteer, Inc.Probing hosts against network application profiles to facilitate classification of network traffic
    US-7599288-B2October 06, 2009Hewlett-Packard Development Company, L.P.Processing of usage data for first and second types of usage-based functions
    US-8670752-B2March 11, 2014At&T Intellectual Property I, L.P.Providing integrated service-entity premium communication services
    WO-2009091295-A1July 23, 2009Telefonaktiebolaget Lm Ericsson (Publ)Pré-lecture de données d'entrée pour une sélection de réseau d'accès
    US-6603969-B1August 05, 2003Nokia Networks OySubscriber service profiles in telecommunication system
    US-8078163-B2December 13, 2011Gogo LlcSystem for customizing electronic content for delivery to a passenger in an airborne wireless cellular network
    US-8160015-B2April 17, 2012Qualcomm IncorporatedSystems and methods for measuring and reducing latency of radio link flows
    US-7200112-B2April 03, 2007Winphoria Networks, Inc.Method, system, and apparatus for a mobile station to sense and select a wireless local area network (WLAN) or a wide area mobile wireless network (WWAN)
    US-7760137-B2July 20, 2010Pfizer, Inc.Portable position determining device
    US-7540408-B2June 02, 2009Hip Consult Inc.Apparatus and method for facilitating money or value transfer
    US-2008022354-A1January 24, 2008Karanvir Grewal, Kapil Sood, Travis Schluessler, Khosravi Hormuzd MRoaming secure authenticated network access method and apparatus
    US-8548427-B2October 01, 2013T-Mobile Usa, Inc.System and method for peer-to-peer transfer of multimedia content and reconciliation thereof
    US-8447324-B2May 21, 2013Qualcomm IncorporatedSystem for multimedia tagging by a mobile user
    US-8204190-B2June 19, 2012Kt CorporationApparatus and method for integrated billing management by real-time session management in wire/wireless integrated service network
    US-8050705-B2November 01, 2011Dell Products L.P.Subscriber identity module unlocking service portal
    US-7809351-B1October 05, 2010Cisco Technology, Inc.Methods and systems for differential billing of services used during a mobile data service session
    US-8364089-B2January 29, 2013Google Inc.Network performance server
    US-8078140-B2December 13, 2011Kajeet, Inc.System and methods for managing the utilization of an electronic device
    US-8116749-B2February 14, 2012Proctor Jr James Arthur, Proctor Iii James ArthurProtocol for anonymous wireless communication
    WO-03014891-A2February 20, 2003The Boeing CompanyGestionnaire de securite de bord
    US-5892900-AApril 06, 1999Intertrust Technologies Corp.Systems and methods for secure transaction management and electronic rights protection
    US-2008221951-A1September 11, 2008Peter Stanforth, Koos Larry W, Koos William W, Hamilla Joseph MSystem and method for policing spectrum usage
    US-6047268-AApril 04, 2000A.T.&T. CorporationMethod and apparatus for billing for transactions conducted over the internet
    US-6078953-AJune 20, 2000Ukiah Software, Inc.System and method for monitoring quality of service over network
    US-8719397-B2May 06, 2014Emoze Ltd.Method and system for email and PIM synchronization and updating
    US-2003028623-A1February 06, 2003Hennessey Wade L., Wainwright John B.Method and apparatus for facilitating distributed delivery of content across a computer network
    US-2013149994-A1June 13, 2013Cellco Partnership D/B/A Verizon WirelessReal time data usage metering on a mobile station and reconciliation with billable usage measured by a mobile network
    US-8660853-B2February 25, 2014Verizon Business Global LlcApplication infrastructure platform (AIP)
    US-6934249-B1August 23, 2005Cisco Technology, Inc.Method and system for minimizing the connection set up time in high speed packet switching networks
    US-8010080-B1August 30, 2011Sprint Spectrum L.P.Predictive payment suggestion in a telecommunication system
    WO-2004077797-A2September 10, 2004Boston Communications Group, Inc.Method and system for providing supervisory control over wireless phone usage
    US-2010151866-A1June 17, 2010Verizon Corporate Services Group Inc.Method and system for routing inter-carrier messaging application traffic via a carrier-assigned identifier
    US-2010311402-A1December 09, 2010Prasanna Srinivasan, Guangming Shi, Venkat Tangirala, Ta-Yan Siu, Julian Durand, Sprigg Stephen AMethod and apparatus for performing soft switch of virtual sim service contracts
    US-2010188990-A1July 29, 2010Gregory G. RaleighNetwork based service profile management with user preference, adaptive policy, network neutrality, and user privacy
    US-2007140275-A1June 21, 2007Chris Bowman, Frank Sheiness, Daugherty David WMethod of preventing denial of service attacks in a cellular network
    US-2010287599-A1November 11, 2010Huawei Technologies Co., Ltd.Method, apparatus and system for implementing policy control
    US-2008313730-A1December 18, 2008Microsoft CorporationExtensible authentication management
    US-8572256-B2October 29, 2013Qualcomm IncorporatedMethod for supporting multiple diversified data applications with efficient use of network resources
    US-7440433-B2October 21, 2008Nortel Networks LimitedMobile IP notification
    US-8701015-B2April 15, 2014Pierre BonnatMethod and system for providing a user interface that enables control of a device via respiratory and/or tactual input
    US-2008229388-A1September 18, 2008Oracle International CorporationDevice agent
    US-2007254675-A1November 01, 2007Motorola, Inc.Method and apparatus for distributed call admission control in a wireless network
    US-2010191612-A1July 29, 2010Gregory G. RaleighVerifiable device assisted service usage monitoring with reporting, synchronization, and notification
    JP-2009212707-ASeptember 17, 2009Fujitsu Ltd, 富士通株式会社Controller, control method and computer program
    US-2006168128-A1July 27, 2006Amber Sistla, Jeremy Rover, Asha KeddyWireless network facilitator and monitor
    US-2008083013-A1April 03, 2008Hesham Soliman, Vincent Park, Mazik David R, Corson Mathew SMethods and apparatus for policy enforcement in a wireless communication system
    US-2009307746-A1December 10, 2009Di Jinwen, Feng Chen, Zhipeng Hou, Shibi Huang, Tan ShiyongMethod, system and device for implementing security control
    US-2008051076-A1February 28, 2008O'shaughnessy John, Jeroen Herman Mol, Pieter Bastiaan LeezenbergSystem And Method For Mobile Device Application Management
    US-8645518-B2February 04, 2014Scott L. DavidComputer-implemented method for compensating ancillary use of a remotely accessible network device
    US-8875042-B2October 28, 2014Blackberry LimitedSystem and method of navigating through notifications
    US-8495360-B2July 23, 2013Siemens Enterprise Communications Gmbh & Co. KgMethod and arrangement for providing a wireless mesh network
    US-8429409-B1April 23, 2013Google Inc.Secure reset of personal and service provider information on mobile devices
    US-8406427-B2March 26, 2013Bae Systems Information And Electronic Systems Integration Inc.Communication network with secure access for portable users
    US-7286848-B2October 23, 2007Richard P Vireday, Robert P FrisbeeMethod and apparatus to provide tiered wireless network access
    US-2008268813-A1October 30, 2008Oracle International CorporationDevice billing agent
    US-2006019632-A1January 26, 2006At&T Wireless Services, Inc.Dedicated wireless device business method
    US-8732808-B2May 20, 2014Cradlepoint, Inc.Data plan activation and modification
    US-2009219170-A1September 03, 2009Clark Ryan C, Kyker James G, Kyker Jonathan P, Kyker James CWireless network inventory system
    US-6292828-B1September 18, 2001David L. WilliamsTrans-modal animated information processing with selective engagement
    US-2009079699-A1March 26, 2009Motorola, Inc.Method and device for associating objects
    US-8064896-B2November 22, 2011Apple Inc.Push notification service
    US-2004044623-A1March 04, 2004Wake Susan L., Julie YuBilling system for wireless device activity
    US-2007243862-A1October 18, 2007Risvan Coskun, Martin Daryl J, Hassan Ahmed E, Wilson John FSystem and method for controlling device usage
    US-2008089295-A1April 17, 2008Keeler James D, Fink Ian M, Krenzer Matthew MSystem and Method of User Access Service Levels in a Distributed Network Communication System
    US-7873344-B2January 18, 2011Cisco Technology, Inc.System and method to distribute emergency information
    US-8104080-B2January 24, 2012Microsoft CorporationUniversal schema for representing management policy
    US-6061571-AMay 09, 2000Nec CorporationTelephone system capable of utilizing telephone number information stored in parent portable telephone unit by a plurality of child portable telephone units
    US-7027408-B2April 11, 2006Qwest Communications International, IncMethod and system for dynamic service profile integration by a service controller
    US-6947985-B2September 20, 2005Websense, Inc.Filtering techniques for managing access to internet sites or other software applications
    US-2003013434-A1January 16, 2003Rosenberg Dave H., Melnicki Michael S.Systems and methods for automatically provisioning wireless services on a wireless device
    US-8352630-B2January 08, 2013Sonus Networks, Inc.Dynamic classification and grouping of network traffic for service application across multiple nodes
    US-2009042536-A1February 12, 2009Tellebs Vienna, Inc.Method and apparatus to manage femtocell traffic
    JP-3148713-B2March 26, 2001株式会社エイ・ティ・アール環境適応通信研究所通信サービス品質制御方法及び装置
    US-2008062900-A1March 13, 2008Bindu Rama RaoDevice and Network Capable of Mobile Device Management
    US-2004039792-A1February 26, 2004Tomoaki NakanishiData transfer system capable of selecting a low-cost call type
    US-8583499-B2November 12, 2013Toshiba Global Commerce Solutions Holding CorporationSystem for secured transactions over a wireless network
    US-8520589-B2August 27, 2013Motorola Mobility LlcMobile device and method for intelligently communicating data generated thereby over short-range, unlicensed wireless networks and wide area wireless networks
    US-8064418-B2November 22, 2011Joikusoft Ltd.Scalable WLAN gateway
    US-2002164983-A1November 07, 2002Li-On Raviv, Carmel Sofer, Shlomo Wolfman, Ory BiranMethod and apparatus for supporting cellular data communication to roaming mobile telephony devices
    US-8477778-B2July 02, 2013Meetrix CorporationApplying multicast protocols and VPN tunneling techniques to achieve high quality of service for real time media transport across IP networks
    US-7974624-B2July 05, 2011Kineto Wireless, Inc.Registration messaging in an unlicensed mobile access telecommunications system
    US-9173090-B2October 27, 2015Teletech Holdings, Inc.Method for activating services associated with a product via a service center supporting a variety of products
    CN-1310401-AAugust 29, 2001王迪兴Multipurpose platform for parallel operation, exchange and control
    US-6539082-B1March 25, 2003British Telecommunications Public Limited CompanyBilling system
    US-2006200663-A1September 07, 2006Microsoft CorporationMethods for describing processor features
    WO-2007068288-A1June 21, 2007Telefonaktiebolaget Lm Ericsson (Publ)Services de reseau intelligent
    US-2013024914-A1January 24, 2013Cellco Partnership D/B/A Verizon WirelessAutomatic device authentication and account identification without user input when application is started on mobile station
    US-7797204-B2September 14, 2010Balent Bruce FDistributed personal automation and shopping method, apparatus, and process
    US-8271045-B2September 18, 2012AT&T Intellectual Property, I, L.PMethods and apparatus to display service quality to a user of a multiple mode communication device
    US-2007093243-A1April 26, 2007Vivek Kapadekar, Sunil Marolia, Rao Bindu RDevice management system
    WO-2008017837-A1February 14, 2008Symbian Software LimitedMobile communications device with event logging
    US-8126396-B2February 28, 2012Broadcom CorporationWireless network that utilizes concurrent interfering transmission and MIMO techniques
    US-2009299857-A1December 03, 2009Brubaker Curtis MSystem and method for obtaining revenue through the display of hyper-relevant advertising on moving objects
    US-7403763-B2July 22, 2008Oracle International CorporationDevice agent
    US-7280816-B2October 09, 2007Agere Systems Inc.Techniques for monitoring mobile telecommunications for shared accounts
    US-8270972-B2September 18, 2012Motorola Mobility LlcMethod and apparatus for detecting an alternate wireless communication network
    US-2003133408-A1July 17, 2003Cheng Mark W., Liangchi HsuApparatus, and associated method, for communicating frame-formatted data at a selected QoS level in a radio communication system
    US-2005075115-A1April 07, 2005Accenture Global Services Gmbh.Mobile provisioning tool system
    CN-101341764-AJanuary 07, 2009艾利森电话股份有限公司Service of intelligent network
    US-2009005005-A1January 01, 2009Apple Inc.Mobile Device Base Station
    US-2007263558-A1November 15, 2007Research In Motion LimitedAdjustment of background scanning interval based on network usage
    US-9176913-B2November 03, 2015Apple Inc.Coherence switch for I/O traffic
    WO-2007097786-A1August 30, 2007Sony Ericsson Mobile Communications AbEstimation de coût dans une application de messagerie pour un dispositif de communication mobile
    US-2002131404-A1September 19, 20024Thpass Inc.Method and system for maintaining and distributing wireless applications
    US-8249601-B2August 21, 2012Motorola Solutions, Inc.Mobile station, infrastructure processor, system and method for use in cellular communications
    US-8694772-B2April 08, 2014Industrial Technology Research InstituteMethod and system for managing network identity
    US-7539132-B2May 26, 2009At&T Intellectual Property Ii, L.P.Methods, systems, and devices for determining COS level
    US-2009282127-A1November 12, 2009Chalk Media Service Corp.Method for enabling bandwidth management for mobile content delivery
    US-2010030890-A1February 04, 2010Satadip Dutta, Viji Kakkattu RavindranProvisioning Artifacts For Policy Enforcement Of Service-Oriented Architecture (SOA) Deployments
    US-2004127200-A1July 01, 2004Shaw Venson M., Leuca Ileana A., Sennett Dewayne A., Daly Brian K., Molchan Andrew J., Carlson Steven I.Delivery of network services
    US-2005238046-A1October 27, 2005Microsoft CorporationUser based communication mode selection on a device capable of carrying out network communications.
    US-2009070379-A1March 12, 2009Rappaport Theodore RClearinghouse system, method, and process for inventorying and acquiring infrastructure, monitoring and controlling network performance for enhancement, and providing localized content in communication networks
    US-8667542-B1March 04, 2014Sprint Communications Company L.P.System and method of filtered presentation of broadcast messages by mobile devices
    US-8150394-B2April 03, 2012Genband Us LlcMethods, systems, and computer program products for synchronizing subscriber feature data across multiple domains
    US-7937069-B2May 03, 2011Rassam FredericSystem and process for switching between cell phone and landline services
    US-6141686-AOctober 31, 2000Deterministic Networks, Inc.Client-side application-classifier gathering network-traffic statistics and application and user names using extensible-service provider plugin for policy-based network control
    US-6683853-B1January 27, 2004Telefonaktiebolaget Lm Ericsson (Publ)Dynamic upgrade of quality of service in a packet switched network
    JP-2009218773-ASeptember 24, 2009Advanced Telecommunication Research Institute International, 株式会社国際電気通信基礎技術研究所Radio apparatus, radio communication method therein, and radio network with the radio apparatus
    US-2002191573-A1December 19, 2002Whitehill Eric A., White Eric D.Embedded routing algorithms under the internet protocol routing layer of a software architecture protocol stack in a mobile Ad-Hoc network
    US-7948953-B2May 24, 2011Aruba Networks, Inc.System and method for advertising the same service set identifier for different basic service sets
    US-7260382-B1August 21, 2007Sprint Spectrum L.P.Method and system for customizing a wireless device's user-interface based on which vendor distributed the wireless device
    US-8505073-B2August 06, 2013United States Cellular CorporationService utilization control manager
    US-8411587-B2April 02, 2013Dell Products L.P.System and method for configuring a network
    US-2008139210-A1June 12, 2008Doug Gisby, Michael Gray, Shen-Yuan Yap, Colbert Michael S, James Robert JClient device method and apparatus for routing a call
    US-2007255769-A1November 01, 2007International Business Machines CorporationSystem of hierarchical policy definition, dissemination, and evaluation
    US-7493659-B1February 17, 2009Mcafee, Inc.Network intrusion detection and analysis system and method
    US-7366497-B2April 29, 2008Nec CorporationMobile terminal, method of controlling the same, and computer program of the same
    US-8166040-B2April 24, 2012Smartshopper Electronics, LlcHandheld device and kiosk system for automated compiling and generating item list information
    US-7865182-B2January 04, 2011Single Touch Interactive, Inc.Over the air provisioning of mobile device settings
    US-8223741-B1July 17, 2012Sprint Communications Company L.P.Acting on data packets in a mobile telecommunications network based on inner headers
    US-2002120540-A1August 29, 2002Michael Kende, Macdonald Robert Christian, Gatto James G.System and method for automatic analysis of rate information
    US-8191116-B1May 29, 2012At&T Mobility Ii LlcUser equipment validation in an IP network
    US-8131281-B1March 06, 2012Oceans' Edge, Inc.Mobile device monitoring and control system
    US-7774456-B1August 10, 2010Packeteer, Inc.Methods, apparatuses and systems facilitating classification of web services network traffic
    US-7283561-B1October 16, 2007Level 3 Communications, LlcSecure network architecture with quality of service
    US-7092696-B1August 15, 2006Nortel Networks LimitedAccounting method and apparatus for communications network
    US-7561899-B2July 14, 2009Insprit Co., Ltd.Method and apparatus for controlling and applying resource of idle screen on mobile
    US-8837322-B2September 16, 2014Freescale Semiconductor, Inc.Method and apparatus for snoop-and-learn intelligence in data plane
    US-7801523-B1September 21, 2010Amdocs Software Systems LimitedSystem, method, and computer program product for charging a roaming network for a chargeable event
    US-8150431-B2April 03, 2012Visto CorporationService management system and associated methodology of providing service related message prioritization in a mobile client
    US-8326359-B2December 04, 2012Honeywell International Inc.Reconfigurable wireless modem adapter
    US-7848768-B2December 07, 2010Sony CorporationNetwork system and communication device
    US-8705361-B2April 22, 2014Tellabs Operations, Inc.Method and apparatus for traffic management in a wireless network
    US-8666395-B2March 04, 2014Tango Networks, Inc.System and method for speeding call originations to a variety of devices using intelligent predictive techniques for half-call routing
    US-2010082431-A1April 01, 2010Jorey Ramer, Adam Soroca, Dennis DoughtyContextual Mobile Content Placement on a Mobile Communication Facility
    US-6725256-B1April 20, 2004Motorola, Inc.System and method for creating an e-mail usage record
    US-7822837-B1October 26, 2010Packeteer, Inc.Adaptive correlation of service level agreement and network application performance
    US-2007100981-A1May 03, 2007Maria Adamczyk, Michael Denny, Xiaofeng Gao, Huslak Nicholas S, Abdi Modaressi, Hong Nguyen, Gregory Patterson, Mike Pickett, Stillman Scott TApplication services infrastructure for next generation networks including one or more IP multimedia subsystem elements and methods of providing the same
    US-2007299965-A1December 27, 2007Jason Nieh, Olshefski David PManagement of client perceived page view response time
    CN-101335666-ADecember 31, 2008杭州华三通信技术有限公司Configuration transmitting method, access control equipment and access point
    US-8442015-B2May 14, 2013Broadcom CorporationMethod and system for an atomizing function of a mobile device
    US-8230061-B2July 24, 2012Microsoft CorporationNetwork resource management with prediction
    US-2008219268-A1September 11, 2008Dennison Larry RSoftware control plane for switches and routers
    US-2006291419-A1December 28, 2006Sprint Spectrum L.P.Method and system for managing communication sessions during multi-mode mobile station handoff
    US-7817983-B2October 19, 2010Qualcomm IncorporatedMethod and apparatus for monitoring usage patterns of a wireless device
    US-8347362-B2January 01, 2013Alcatel LucentUsage control services performed in an end user device
    US-8356336-B2January 15, 2013Rpx CorporationSystem and method for double-capture/double-redirect to a different location
    US-8379847-B2February 19, 2013International Business Machines CorporationData and control encryption
    US-7664494-B2February 16, 2010Roamware, Inc.Signaling and packet relay method and system including general packet radio service (“GPRS”)
    US-7546629-B2June 09, 2009Check Point Software Technologies, Inc.System and methodology for security policy arbitration
    US-8135392-B2March 13, 2012Apple Inc.Managing notification service connections and displaying icon badges
    US-7970350-B2June 28, 2011Motorola Mobility, Inc.Devices and methods for content sharing
    US-2006098627-A1May 11, 2006Jeyhan Karaoguz, Nambirajan SeshadriEnhanced wide area network support via a broadband access gateway
    US-2006156398-A1July 13, 2006Ross Alan D, Morgan Dennis MSystem security event notification aggregation and non-repudiation
    US-7920529-B1April 05, 2011At&T Mobility Ii LlcIntermediary query manager for 2G and 3G services
    US-8208919-B2June 26, 2012Cellco PartnershipRoute optimization using network enforced, mobile implemented policy
    US-6952428-B1October 04, 20053Com CorporationSystem and method for a specialized dynamic host configuration protocol proxy in a data-over-cable network
    US-7899438-B2March 01, 2011Kajeet, Inc.Feature management of a communication device
    US-8194549-B2June 05, 2012At&T Mobility Ii LlcFemto cell access point passthrough model
    US-2003233332-A1December 18, 2003Keeler James D., Fink Ian M., Krenzer Matthew M.System and method for user access to a distributed network communication system using persistent identification of subscribers
    US-2008010452-A1January 10, 2008Michael Holtzman, Ron Barzilai, Rotem Sela, Fabrice Jogand-CoulombContent Control System Using Certificate Revocation Lists
    CN-101115248-AJanuary 30, 2008联想(北京)有限公司多模终端及其数据转发方法
    US-2002022472-A1February 21, 2002Telemac CorporationMultiple virtual wallets in wireless device
    US-7444669-B1October 28, 2008Microsoft CorporationMethods and systems for providing variable rates of service for accessing networks, methods and systems for accessing the internet
    US-8000318-B2August 16, 2011Embarq Holdings Company, LlcSystem and method for call routing based on transmission performance of a packet network
    US-8155670-B2April 10, 20122Wire, Inc.Cell notification
    WO-2006077481-A1July 27, 2006Truecontext CorporationPolicy-driven mobile forms applications
    US-8005459-B2August 23, 2011Research In Motion LimitedSystem and method of authenticating login credentials in a wireless communication system
    US-8402165-B2March 19, 2013Research In Motion LimitedMethods and apparatus for prioritizing assignment of a packet data session for a plurality of applications of a mobile communication device
    US-6782412-B2August 24, 2004Verizon Laboratories Inc.Systems and methods for providing unified multimedia communication services
    US-6154738-ANovember 28, 2000Call; Charles GainorMethods and apparatus for disseminating product information via the internet using universal product codes
    US-7760711-B1July 20, 2010At&T Intellectual Property Ii, L.P.Method for billing IP broadband subscribers
    US-2012108225-A1May 03, 2012Michael Luna, Ari BackholmMobile traffic categorization and policy for network use optimization while preserving user experience
    US-2007073899-A1March 29, 2007Judge Francis P, Bonnette Michael D, Emond Paul MTechniques to synchronize heterogeneous data sources
    US-8122128-B2February 21, 2012Burke Ii Robert M, Carman David ZSystem for regulating access to and distributing content in a network
    US-8116781-B2February 14, 2012Rockstar Bidco LpMethod and system of managing wireless resources
    US-8504687-B2August 06, 2013Telecom Italia S.P.A.Application data flow management in an IP network
    US-7643411-B2January 05, 2010Cisco Technology, Inc.Network-triggered quality of service (QoS) reservation
    US-8149823-B2April 03, 2012At&T Intellectual Property I, L.P.Computer telephony integration (CTI) systems and methods for enhancing school safety
    US-2003005112-A1January 02, 2003Krautkremer Todd JosephMethods, apparatuses and systems enabling a network services provider to deliver application performance management services
    WO-2007014630-A1February 08, 2007Telefonaktiebolaget Lm Ericsson (Publ)Automatic mobile device capability management
    US-8184590-B2May 22, 2012Counterpath Technologies Inc.Method and system for handoff between wireless networks
    US-2010188994-A1July 29, 2010Gregory G. RaleighVerifiable service billing for intermediate networking devices
    WO-2007124279-A2November 01, 2007Cisco Technology, Inc.Procédé et appareil d'authentification d'un dispositif sans fil bimode simplifie
    WO-2007018363-A1February 15, 2007Upresto, Inc.System for testifying mobile communication network and method thereof
    US-2007257767-A1November 08, 2007First Data CorporationWireless phone rf presentation instrument with sensor control
    WO-2007053848-A1May 10, 2007Mobile Armor, LlcCentralized dynamic security control for a mobile device network
    US-8180881-B2May 15, 2012Kt CorporationApparatus for analyzing the packet data on mobile communication network and method thereof
    US-7228354-B2June 05, 2007International Business Machines CorporationMethod for improving performance in a computer storage system by regulating resource requests from clients
    US-8019868-B2September 13, 2011Citrix Systems, Inc.Method and systems for routing packets from an endpoint to a gateway
    US-2002161601-A1October 31, 2002Bernhard Nauer, Thomas PfoertnerBilling method for multimedia networks
    US-2007025301-A1February 01, 2007Justus Petersson, Magnus Westerlund, Alessio Terzani, Svetlana Chemiakina, Robert SkogMethod and system for rate control service in a network
    US-5974439-AOctober 26, 1999International Business Machines CorporationResource sharing between real-time and general purpose programs
    US-8099517-B2January 17, 2012Verizon Patent And Licensing Inc.Assigning priority to network traffic at customer premises
    US-8358975-B2January 22, 2013Microsoft CorporationSignaling over cellular networks to reduce the Wi-Fi energy consumption of mobile devices
    US-7899039-B2March 01, 2011Cisco Technology, Inc.System and method for providing location and access network information support in a network environment
    US-2003046396-A1March 06, 2003Richter Roger K., Qiu Chaoxin C., Johnson Scott C.Systems and methods for managing resource utilization in information management environments
    US-2008164304-A1July 10, 2008Subram Narasimhan, Kiraly Kenneth POver-the-air device provisioning and activation
    US-7516219-B2April 07, 2009Ventraq CorporationConsumer configurable mobile communication web filtering solution
    US-2012029718-A1February 02, 2012Davis Edward LSystems and methods for generating and utilizing electrical signatures for electrical and electronic equipment
    US-2008282319-A1November 13, 2008Koninklijke Philips Electronics, N.V.System for Managing Access Control
    US-2008059743-A1March 06, 2008Sandisk Il Ltd.Portable Storage Device With Updatable Access Permission
    US-7747730-B1June 29, 2010Netfuel, Inc.Managing computer network resources
    US-8191124-B2May 29, 2012Devicescape Software, Inc.Systems and methods for acquiring network credentials
    US-2008096559-A1April 24, 2008Research In Motion LimitedMethods And Apparatus For Providing Manual Selection Of A Communication Network For A Mobile Station
    US-8032409-B1October 04, 2011Accenture Global Services LimitedEnhanced visibility during installation management in a network-based supply chain environment
    US-8095640-B2January 10, 2012Alcatel LucentDistributed architecture for real-time flow measurement at the network domain level
    US-7151764-B1December 19, 2006Nokia CorporationService notification on a low bluetooth layer
    US-2004225561-A1November 11, 2004Todd Hertzberg, Povl KochMethod for handling a subscription of a communication device
    US-2004255145-A1December 16, 2004Jerry ChowMemory protection systems and methods for writable memory
    US-8279864-B2October 02, 2012Verizon Patent And Licensing Inc.Policy based quality of service and encryption over MPLS networks
    US-2004047358-A1March 11, 2004Aeptech Microsystems, Inc.Broadband communications access device
    US-8185127-B1May 22, 2012Sprint Communications Company L. P.Method and system for allocating network resources for a single user operating multiple devices
    US-8358638-B2January 22, 2013Wefi, Inc.Dynamically created and expanded wireless network
    US-7877090-B2January 25, 2011Oracle International CorporationRoaming across different access mechanisms and network technologies
    US-7580857-B2August 25, 2009First Data CorporationMethods and systems for online transaction processing
    US-8095666-B2January 10, 2012Perftech, Inc.Internet provider subscriber communications system
    US-8521110-B2August 27, 2013Broadcom CorporationMultiband communication device for use with a mesh network and methods for use therewith
    US-8126123-B2February 28, 2012Alcatel LucentPre-biller in internet protocol multimedia subsystem (IMS) charging gateway function (CGF)
    US-8271049-B2September 18, 2012Tango Networks, Inc.System and method for enabling DTMF detection in a VoIP network
    US-8423016-B2April 16, 2013Research In Motion LimitedSystem and method for providing operator-differentiated messaging to a wireless user equipment (UE) device
    US-2006233166-A1October 19, 2006AlcatelPublic and private network service management systems and methods
    US-2010043068-A1February 18, 2010Juniper Networks, Inc.Routing device having integrated mpls-aware firewall
    US-8634425-B2January 21, 2014At&T Intellectual Property I, L.P.Profile sharing across persona
    US-7742406-B1June 22, 2010Packeteer, Inc.Coordinated environment for classification and control of network traffic
    US-2008311885-A1December 18, 2008Christopher James Dawson, Hamilton Ii Rick Allen, James Wesley Seaman, Timothy Moffectt WatersTraffic Shaping of Cellular Service Consumption Through Delaying of Service Completion According to Geographical-Based Pricing Advantages
    US-2006206709-A1September 14, 2006Fujitsu LimitedAuthentication services using mobile device
    US-7970426-B2June 28, 2011Motorola Solutions, Inc.Method of assigning provisional identification to a subscriber unit and group
    US-8447607-B2May 21, 2013Voicebox Technologies, Inc.Mobile systems and methods of supporting natural language human-machine interactions
    US-7765294-B2July 27, 2010Embarq Holdings Company, LlcSystem and method for managing subscriber usage of a communications network
    US-2013183937-A1July 18, 2013Kajeet, Inc.Mobile device management
    US-2004127208-A1July 01, 2004Biju Nair, Ognjen Redzic, Martin Singer, Robert BoxallSystems and methods for seamless roaming between wireless networks
    US-2011081881-A1April 07, 2011Kajeet, Inc.Feature Management of a Communication Device
    US-7450591-B2November 11, 2008Telefonaktiebolaget L M Ericsson (Publ)System for providing flexible charging in a network
    US-7599714-B2October 06, 2009Alcatel-Lucent Usa Inc.Increasing the range of access point cells for a given throughput in a downlink of a wireless local area network
    US-8713641-B1April 29, 2014Nomadix, Inc.Systems and methods for authorizing, authenticating and accounting users having transparent computer access to a network using a gateway device
    US-9177455-B2November 03, 2015Perpcast, Inc.Personal safety system, method, and apparatus
    US-8670334-B2March 11, 2014Cisco Technology, IncClick quality classification and delivery
    US-2014073291-A1March 13, 2014Steven Hildner, Nathan Klonoski, Jay Lukin, Adam McKay, Sam Emara, Thomas Shanley, Thomas Krussel, Paul NeunerMobile device monitoring and control system
    US-8255689-B2August 28, 2012Samsung Electronics Co., Ltd.Method and system for performing distributed verification with respect to measurement data in sensor network
    US-7614051-B2November 03, 2009Microsoft CorporationCreating file systems within a file in a storage technology-abstracted manner
    US-8144591-B2March 27, 2012Cisco Technology, Inc.System and method for reducing latency in call setup and teardown
    US-7801985-B1September 21, 2010Anchor Intelligence, Inc.Data transfer for network interaction fraudulence detection
    US-2011110309-A1May 12, 2011Broadcom CorporatonNetwork nodes cooperatively routing traffic flow amongst wired and wireless networks
    US-2007300252-A1December 27, 2007Swarup Acharya, Yuh-Jye Chang, Anurag SrivastavaUser Interface Methods and Apparatus for Roaming Access to Subscription Services
    US-2008207167-A1August 28, 2008Embarq Holdings Company, LlcSystem and method for remotely managing wireless devices
    US-2008049630-A1February 28, 2008Kozisek Steven E, Coppage Carl M, Morrill Robert JSystem and method for monitoring and optimizing network performance to a wireless device
    US-2010017506-A1January 21, 2010Apple Inc.Systems and methods for monitoring data and bandwidth usage
    US-2004137890-A1July 15, 2004At&T Wireless Services, Inc.General purpose automated activation and provisioning technologies
    US-2012166604-A1June 28, 2012Microsoft CorporationFlexible policy based network decisionmaking
    US-7502672-B1March 10, 2009Usa Technologies, Inc.Wireless vehicle diagnostics with service and part determination capabilities
    US-7007295-B1February 28, 2006B3D, Inc.System and method for Internet streaming of 3D animated content
    US-2007266422-A1November 15, 2007Germano Vernon P, Jeff AyersCentralized Dynamic Security Control for a Mobile Device Network
    US-7984130-B2July 19, 2011Cellco PartnershipMultimedia next generation network architecture for IP services delivery based on network and user policy
    US-8046449-B2October 25, 2011Hitachi, Ltd.Contents management system and contents management method
    US-2008183812-A1July 31, 2008International Business Machines CorporationMethod and System for Fault-Tolerant Remote Boot in the Presence of Boot Server Overload/Failure with Self-Throttling Boot Servers
    US-7245901-B2July 17, 2007Telemac CorporationMobile phone with internal accounting
    US-8418168-B2April 09, 2013Research In Motion LimitedMethod and system for performing a software upgrade on an electronic device connected to a computer
    US-8233433-B2July 31, 2012Kyocera CorporationApparatus, system and method for initiating WLAN service using beacon signals
    CN-101035308-ASeptember 12, 2007华为技术有限公司Radio communication system and mobility management method
    US-2006075506-A1April 06, 2006Sanda Frank S, Naohisa Fukuda, Laves Edward W, Johnston Robert L, Tidwell Justin O, Gurgone Raymond T, Robins David S, Worthington Laura J, Zeitz Karlton MSystems and methods for enhanced electronic asset protection
    US-8621056-B2December 31, 2013Microsoft CorporationEnabling plural computing devices to communicate using a master account
    US-7792538-B2September 07, 2010Embarq Holdings Company, LlcSystem and method for enabling subscribers of a communications carrier to access a network of wireless access points of subscribers of other communications carriers
    US-2006072451-A1April 06, 2006Ross Alan DRole-based network traffic-flow rate control
    US-8908516-B2December 09, 2014Blackberry CorporationMaintaining stability of a wireless network by adjusting transmitting period
    WO-2005008995-A1January 27, 2005Starhub LtdProcede et systeme d'entree en communication conviviale avec des fournisseurs de services internet selectionnes
    US-8340718-B2December 25, 2012Telecom Italia S.P.A.Method and system for estimating road traffic
    CA-2688553-A1December 04, 2008Yoggie Security Systems, Ltd., Shlomo TouboulSysteme et procede pour fournir a un dispositif une protection pare-feu pour reseau et ordinateur avec isolement d'adresse dynamique
    EP-2466831-A1June 20, 2012Openet Telecom Ltd.Methods, systems and devices for pipeline processing
    US-7191248-B2March 13, 2007Microsoft CorporationCommunication stack for network communication and routing
    US-6502131-B1December 31, 2002Novell, Inc.Directory enabled policy management tool for intelligent traffic management
    US-7271765-B2September 18, 2007Trueposition, Inc.Applications processor including a database system, for use in a wireless location system
    US-6785889-B1August 31, 2004Aurema, Inc.System and method for scheduling bandwidth resources using a Kalman estimator with active feedback
    US-8086398-B2December 27, 2011Research In Motion LimitedSending location information from within a communication application
    US-8332517-B2December 11, 2012Incnetworks, Inc.Method, computer program, and algorithm for computing network service value pricing based on communication service experiences delivered to consumers and merchants over a smart multi-services (SMS) communication network
    US-7593730-B2September 22, 2009Qualcomm IncorporatedSystem selection and acquisition for WWAN and WLAN systems
    US-8108520-B2January 31, 2012Nokia CorporationApparatus and method for providing quality of service for a network data connection
    US-8180333-B1May 15, 2012Sprint Spectrum L.P.Differential routing of communication-usage records
    US-7668612-B1February 23, 2010Hewlett-Packard Development Company, L.P.System and method for efficient manufacture and update of electronic devices
    US-8254880-B2August 28, 2012Apple Inc.Access control
    US-8351898-B2January 08, 2013Headwater Partners I LlcVerifiable device assisted service usage billing with integrated accounting, mediation accounting, and multi-account
    US-8023425-B2September 20, 2011Headwater Partners IVerifiable service billing for intermediate networking devices
    US-6735206-B1May 11, 2004Sun Microsystems, Inc.Method and apparatus for performing a fast service lookup in cluster networking
    US-6563806-B1May 13, 2003Hitachi, Ltd.Base station for multi-carrier TDMA mobile communication system and method for assigning communication channels
    US-6581092-B1June 17, 2003Ricoh Co., Ltd.Method and system for remote diagnostic, control and information collection based on various communication modes for sending messages to users
    US-7724716-B2May 25, 2010Apple Inc.Wireless communication system
    US-8019820-B2September 13, 2011Research In Motion LimitedService gateway decomposition in a network environment including IMS
    US-8191106-B2May 29, 2012Alcatel LucentSystem and method of network access security policy management for multimodal device
    US-8131256-B2March 06, 2012Nokia CorporationGenerating and providing access and content charges for different services to a user device in a communication system
    WO-2007001833-A2January 04, 2007Symbol Technologies, Inc.Gestionnaire de politique de mobilite destine a des dispositifs informatiques mobiles
    US-7940751-B2May 10, 2011Broadcom CorporationPersonal area network data encapsulation in WLAN communications
    US-7958029-B1June 07, 2011Thomas Bobich, Carl-Manuel Brachet, Robert Gray, John HinmanMethod for minimizing financial risk for wireless services
    US-2011238545-A1September 29, 2011Nokia CorporationMethod and apparatus for providing bundled services
    US-8259692-B2September 04, 2012Nokia CorporationMethod providing positioning and navigation inside large buildings
    US-7043225-B1May 09, 2006Cisco Technology, Inc.Method and system for brokering bandwidth in a wireless communications network
    US-2008212751-A1September 04, 2008Ascalade Communications Inc.Telephone background screensaver with live internet content
    US-2008270212-A1October 30, 2008Jeffrey Blight, Amanda Elizabeth Chessell, Gale Martin J, Christopher Edward SharpMethod, apparatus or software for managing a data processing process
    US-2006014519-A1January 19, 2006William Marsh, David Langworthy, James DuttonPooling groups of wireless communication users
    US-8315594-B1November 20, 2012Cellco PartnershipSelecting a service plan based on projected usage requirements
    US-8495181-B2July 23, 2013Citrix Systems, IncSystems and methods for application based interception SSI/VPN traffic
    US-2006199608-A1September 07, 2006Kyocera Wireless Corp.Systems and methods for motion sensitive roaming in a mobile communication device
    US-6654786-B1November 25, 2003Openwave Systems Inc.Method and apparatus for informing wireless clients about updated information
    US-2013095787-A1April 18, 2013Cellco Partnership D/B/A Verizon WirelessData transport bundle
    US-2004236547-A1November 25, 2004Rappaport Theodore S., Skidmore Roger R.System and method for automated placement or configuration of equipment for obtaining desired network performance objectives and for security, RF tags, and bandwidth provisioning
    US-8571598-B2October 29, 2013Intel CorporationMethod and apparatus for location-based wireless connection and pairing
    US-8271992-B2September 18, 2012Nirvanix, Inc.Load based file allocation among a plurality of storage devices
    US-7418257-B2August 26, 2008Pantech & Curitel Communications, Inc.Mobile communication terminal, wireless data service authentication server, system for automatically blocking voice call connection, and method of processing various messages in mobile communication terminal
    US-2005021995-A1January 27, 2005July Systems Inc.Application rights management in a mobile environment
    US-8971912-B2March 03, 2015Industrial Technology Research InstitutePaging process in a home cellular network
    CN-101080055-ANovember 28, 2007腾讯科技(深圳)有限公司一种基于手机浏览器快速浏览网页的方法、系统及设备
    US-7990049-B2August 02, 2011Canon Kabushiki KaishaOrganic electroluminescent device and production method of the device, and display apparatus
    US-7421004-B2September 02, 2008Kamilo FeherBroadband, ultra wideband and ultra narrowband reconfigurable interoperable systems
    US-2007005795-A1January 04, 2007Activesky, Inc.Object oriented video system
    CN-1889777-AJanuary 03, 2007华为技术有限公司Business exchaging method for switching from 2G to 3G mobile communication system
    US-8700729-B2April 15, 2014Robin DuaMethod and apparatus for managing credentials through a wireless network
    US-2005128967-A1June 16, 2005Scobbie Donald M.Identifying services provided via IP and similar packet networks, and service usage records for such services
    US-2008060066-A1March 06, 2008Devicescape Software, Inc.Systems and methods for acquiring network credentials
    JP-2009111919-AMay 21, 2009Kyocera Communication Systems Co Ltd, 京セラコミュニケーションシステム株式会社System, program and recording medium for billing data communication fee, and method of billing data communication fee
    US-2014241342-A1August 28, 2014Rockstar Consortium Us LpEmergency services for packet networks
    US-8995952-B1March 31, 2015Kajeet, Inc.Feature management of a communication device
    US-2013125004-A1May 16, 2013Jianyu Roy Zheng, Mark Allen Hanson, Djung NguyenSystem and method for managing wireless connections in computer
    US-2010198698-A1August 05, 2010Headwater Partners I LlcAdaptive ambient services
    US-6996393-B2February 07, 2006Nokia CorporationMobile content delivery system
    US-2007255797-A1November 01, 2007Dunn Douglas L, Chang Henry SMethod for selecting an air interface using an access list on a multi-mode wireless device
    US-8407763-B2March 26, 2013Bae Systems Information And Electronic Systems Integration Inc.Secure network interface device
    US-7272660-B1September 18, 2007Oracle International CorporationArchitecture for general purpose near real-time business intelligence system and methods therefor
    US-7379731-B2May 27, 2008Ntt Docomo Inc.System for managing program applications storable in a mobile terminal
    US-6922562-B2July 26, 2005Stephen L. Ward, Richard J. TettSystem and method for providing information services to cellular roamers
    US-7454191-B2November 18, 2008International Business Machines CorporationTraffic shaping of cellular service consumption through delaying of service completion according to geographical-based pricing advantages
    US-8441955-B2May 14, 2013Tektronix, Inc.Determining mobile video quality of experience and impact of video transcoding
    US-8156206-B2April 10, 20125O9, Inc.Contextual data communication platform
    US-7058968-B2June 06, 2006Cisco Technology, Inc.Computer security and management system
    US-7962622-B2June 14, 2011Motorola Mobility, Inc.System and method for providing provisioning and upgrade services for a wireless device
    US-8528068-B1September 03, 2013Purple Communications, Inc.Method of authenticating a user on a network
    US-2007033194-A1February 08, 2007Srinivas Davanum M, Parker Leo F, Sedukhin Igor S, Dmitri Tcherevik, Vlad UmanskySystem and method for actively managing service-oriented architecture
    US-2008318547-A1December 25, 2008Ballou Jr Bernard L, Charles Eric Hunter, Timothy Richard CrockerCommunications network
    WO-2006073837-A2July 13, 2006Symbol Technologies, Inc.Procede et appareil de gestion de politique de reseau adaptatif pour des ordinateurs mobiles sans fil
    US-7865187-B2January 04, 2011Jumptap, Inc.Managing sponsored content based on usage history
    US-6965667-B2November 15, 2005Slingshot Communications, Inc.Method of accounting prepaid online internet service credit values
    US-7969950-B2June 28, 2011Aruba Networks, Inc.System and method for monitoring and enforcing policy within a wireless network
    US-8571501-B2October 29, 2013Qualcomm IncorporatedCellular handheld device with FM Radio Data System receiver
    US-2007226775-A1September 27, 2007Cisco Technology, Inc.System and Method for Enforcing Policy in a Communication Network
    US-2010020822-A1January 28, 2010Embarq Holdings Company, LlcAuto bandwidth negotiation, reroute and advertisement
    US-8151205-B2April 03, 2012Nokia CorporationMethods, apparatuses, and computer program products for providing activity coordination information
    US-6957067-B1October 18, 2005Aruba NetworksSystem and method for monitoring and enforcing policy within a wireless network
    US-2008229385-A1September 18, 2008Feder Peretz M, Konstantin LivanosMobility Aware Policy and Charging Control in a Wireless Communication Network
    US-7685254-B2March 23, 2010Pandya Ashish ARuntime adaptable search processor
    WO-03017065-A2February 27, 2003Apogee NetworksContent ownership resolution
    US-2006291477-A1December 28, 2006Marian Croak, Hossein EslambolchiMethod and apparatus for dynamically calculating the capacity of a packet network
    US-2003182420-A1September 25, 2003Kent Jones, Rene Campbell, Ian Gaffner, Doug SpencerMethod, system and apparatus for monitoring and controlling internet site content access
    US-6542500-B1April 01, 2003At&T Corp.Network server platform (NSP) for a hybrid coaxial/twisted pair local loop network service architecture
    US-2010248719-A1September 30, 2010Aastra Telecom Schwiez AgSelf-configuring man-machine interface for a communication terminal
    US-2003050070-A1March 13, 2003Alex Mashinsky, Clifford RosenMethod and system for dynamic spectrum allocation and management
    US-2006040642-A1February 23, 2006Adam Boris, Mcfarland DanielService detail record application and system
    US-2006048223-A1March 02, 2006Lee Michael C, Tong Frank C, Lau Francis CMethod and system for providing tamper-resistant software
    US-2010041364-A1February 18, 2010At&T Mobility Ii Llc, At&T Intellectual Property I, L.P., At&T Services, Inc.Femtocell service registration, activation, and provisioning
    US-7095754-B2August 22, 2006At&T Corp.Tiered contention multiple access (TCMA): a method for priority-based shared channel access
    US-8229914-B2July 24, 2012Jumptap, Inc.Mobile content spidering and compatibility determination
    US-8284740-B2October 09, 2012Intel CorporationTechniques to share multimedia and enable cellular phone conference calling using ad-hoc wireless networks
    US-7133695-B2November 07, 2006Siemens Communications, Inc.System and method for automatic mobile device activation
    US-7697540-B2April 13, 2010Telefonaktiebolaget L M Ericsson (Publ)Quality of service (QoS) class reordering with token retention
    US-7224968-B2May 29, 2007Actix LimitedNetwork testing and monitoring systems
    US-7136361-B2November 14, 2006At&T Corp.Hybrid coordination function (HCF) access through tiered contention and overlapped wireless cell mitigation
    US-7986935-B1July 26, 2011Sprint Communications Company L.P.Service plan optimizer
    US-8862751-B2October 14, 2014Nokia CorporationSystem and method of controlling application level access of subscriber to a network
    US-2006072646-A1April 06, 2006Kamilo FeherBroadband, ultra wideband and ultra narrowband reconfigurable interoperable systems
    US-2007259656-A1November 08, 2007Lg Electronics Inc.Mobile communication terminal and method for controlling the same
    US-8275415-B2September 25, 2012At&T Intellectual Property I, LpSystems and methods for multi-device wireless SIM management
    US-7017189-B1March 21, 2006Microsoft CorporationSystem and method for activating a rendering device in a multi-level rights-management architecture
    US-7032072-B1April 18, 2006Packeteer, Inc.Method and apparatus for fast lookup of related classification entities in a tree-ordered classification hierarchy
    US-2009016310-A1January 15, 2009Rasal Digambar LOptimized usage of access technology in a multi-mode architecture
    US-8195163-B2June 05, 2012Ascendent Telecommunications, Inc.Client device method and apparatus for routing a call
    US-8050690-B2November 01, 2011Mpanion, Inc.Location based presence and privacy management
    US-8385199-B1February 26, 2013Radisys CorporationAdaptive traffic shaping for wireless communication systems
    US-8242959-B2August 14, 2012Trueposition, Inc.Sparsed U-TDOA wireless location networks
    US-8208788-B2June 26, 2012Kabushiki Kaisha ToshibaInformation storage medium, information reproducing apparatus, and information reproducing method
    US-7856226-B2December 21, 2010Aylus Networks, Inc.Systems and methods for IMS user sessions with dynamic service selection
    US-2005135264-A1June 23, 2005Jeff Popoff, Victor Leung, Karthik RamakrishnanMethod for implementing an intelligent content rating middleware platform and gateway system
    US-8429403-B2April 23, 2013Juniper Networks, Inc.Systems and methods for provisioning network devices
    US-8320244-B2November 27, 2012Qualcomm IncorporatedReservation based MAC protocol
    US-7966405-B2June 21, 2011Microsoft CorporationSession multiplex protocol
    US-7843831-B2November 30, 2010Embarq Holdings Company LlcSystem and method for routing data on a packet network
    US-7805140-B2September 28, 2010Cisco Technology, Inc.Pre-emptive roaming mechanism allowing for enhanced QoS in wireless network environments
    US-7411930-B2August 12, 2008Qualcomm, IncorporatedApparatus and method for prioritized apportionment of transmission power in a multi-carrier terminal
    US-2009286507-A1November 19, 2009At&T Intellectual Property I, L.P.Multiple Access Internet Portal Revenue Sharing
    US-2007143824-A1June 21, 2007Majid ShahbaziSystem and method for enforcing a security policy on mobile devices using dynamically generated security profiles
    US-8543265-B2September 24, 2013Honeywell International Inc.Systems and methods for unmanned aerial vehicle navigation
    US-6996076-B1February 07, 2006Sonus Networks, Inc.System and method to internetwork wireless telecommunication networks
    US-7921463-B2April 05, 2011Intel CorporationMethods and apparatus for providing an insertion and integrity protection system associated with a wireless communication platform
    US-2009163173-A1June 25, 2009Motorola, Inc.Unauthorized call activity detection in a cellular communication system
    US-8527410-B2September 03, 2013Nokia CorporationControl of billing in a communications system
    US-8463232-B2June 11, 2013Motorola Mobility LlcAccurate billing for services used across multiple serving nodes
    US-7610328-B2October 27, 2009Alcatel-Lucent Usa Inc.Methods and apparatus for a multi-technology subscriber base for global roaming
    US-8411691-B2April 02, 2013Juniper Networks, Inc.Transfer of mobile subscriber context in cellular networks using extended routing protocol
    US-2002188732-A1December 12, 2002Buckman Charles R., Cox Dennis J., Kolbly Donovan M., Craig Cantrell, Smith Brian C., Werner Jon H., Willebeek-Lemair Marc, Blackard Joe Wayne, Webster Francis S.System and method for allocating bandwidth across a network
    US-7039037-B2May 02, 2006Wang Jiwei R, Alin Jayant, Vincent Kadar, Ken KimMethod and apparatus for providing service selection, redirection and managing of subscriber access to multiple WAP (Wireless Application Protocol) gateways simultaneously
    US-7957511-B2June 07, 2011Hewlett-Packard Development Company, L.P.Providing network services to a network agent
    US-8527662-B2September 03, 2013Meraki, Inc.System and method for remote monitoring and control of network devices
    US-2009049518-A1February 19, 2009Innopath Software, Inc.Managing and Enforcing Policies on Mobile Devices
    WO-2008080139-A1July 03, 2008Integrated Mobile, Inc.System and method for managing mobile devices and services
    US-2006218395-A1September 28, 2006Oracle International CorporationDevice agent
    US-7987496-B2July 26, 2011Microsoft CorporationAutomatic application of information protection policies
    US-2004243992-A1December 02, 2004Gustafson James P., Toni Pakarinen, Hammerberg Karl W., Rao Bindu Rama, Campbell Rafe V.Update system capable of updating software across multiple FLASH chips
    US-2008082643-A1April 03, 2008Nortel Networks LimitedApplication Server Billing
    US-2006126562-A1June 15, 2006Huitao LiuMethod and system for seamless service availability for multi-mode terminals in different access networks
    US-2005250536-A1November 10, 2005Guoshun Deng, Xiaohua Cheng, Feng XiangMethod and system for wireless data communication in data processing system
    US-8315999-B2November 20, 2012Nirvanix, Inc.Policy-based file management for a storage delivery network
    US-2007061800-A1March 15, 2007Hon Hai Precision Industry Co., Ltd.System and method for updating software in a network device
    US-2004030705-A1February 12, 2004Accenture Global Services, GmbhService control architecture
    US-2005041617-A1February 24, 2005Nokia CorporationActivation of communication sessions in a communication system
    US-8725899-B2May 13, 2014Nomadix, Inc.Systems and methods for providing content and services on a network system
    US-8019846-B2September 13, 2011Alcatel LucentRemote activation of home devices
    US-8320902-B2November 27, 2012Kapsch Trafficcom AgSystem and method for selecting services in a wireless communication network
    US-8126476-B2February 28, 2012Wefi, Inc.System and method for mapping wireless access points
    US-8244241-B2August 14, 2012Research In Motion LimitedWLAN network information caching
    US-2009067372-A1March 12, 2009Qualcomm IncorporatedHost-based quality of service for wireless communications
    US-2004132427-A1July 08, 2004Wan-Yeon Lee, Woon-Young Yeo, Ki-Hyoung ChoHandling charging information in interworking structure of mobile communication and wireless local area networks
    US-7142876-B2November 28, 2006Nokia CorporationLocation dependent services
    US-2005108075-A1May 19, 2005International Business Machines CorporationMethod, apparatus, and program for adaptive control of application power consumption in a mobile computer
    US-7826427-B2November 02, 2010Intel CorporationMethod for secure transfer of data to a wireless device for enabling multi-network roaming
    US-7937450-B2May 03, 2011Viviana Research LlcSystem for providing content, management, and interactivity for thin client devices
    US-7929959-B2April 19, 2011Apple Inc.Service provider activation
    US-2010190469-A1July 29, 2010Qualcomm IncorporatedCertified device-based accounting
    US-2005055595-A1March 10, 2005Mark Frazer, Rivard Philippe A.Software update method, apparatus and system
    US-8353001-B2January 08, 2013Symbol Technologies, Inc.Methods and apparatus for rating device security and automatically assessing security compliance
    WO-2007126352-A1November 08, 2007Telefonaktiebolaget Lm Ericsson (Publ)A method for generating a congestion flag based on measured system load
    US-7912056-B1March 22, 2011Juniper Networks, Inc.Dynamic traffic shaping adjustments for distributed multicast replication
    US-8422988-B1April 16, 2013Bee Networx Inc.Controlling activity levels and reducing infrastructure data transmission costs for wireless mobile devices
    US-7627872-B2December 01, 2009Arbitron Inc.Media data usage measurement and reporting systems and methods
    US-2006095517-A1May 04, 2006O'connor Clint H, Anson Douglas MWide area wireless messaging system
    US-2010198939-A1August 05, 2010Headwater Partners I LlcDevice assisted services install
    US-8819253-B2August 26, 2014Oracle America, Inc.Network message generation for automated authentication
    US-7945240-B1May 17, 2011At&T Mobility Ii LlcMobile communications billing architecture
    US-8386386-B1February 26, 2013Sprint Communications Company L.P.Phone usage pattern as credit card fraud detection trigger
    US-2011159818-A1June 30, 2011Wefi, Inc.System and Method of Automatically Connecting a Mobile Communication Device to A Network Using a Communications Resource Database
    US-2013030960-A1January 31, 2013Cellco Partnership D/B/A Verizon WirelessAlternative data plans
    CN-1802839-AJuly 12, 2006摩托罗拉公司(在特拉华州注册的公司)通过无线局域网向移动站提供网络服务信息的方法和装置
    US-8370477-B2February 05, 2013Nomadix, Inc.Systems and methods for providing content and services on a network system
    US-8073427-B2December 06, 2011At&T Intellectual Property I, L.P.Remotely requesting an alert from a lost or stolen wireless device
    EP-1739518-A1January 03, 2007Research In Motion LimitedSystem und Verfahren für das Management und das Widerrufen von Rechten
    JP-2009232107-AOctober 08, 2009Fujitsu Ltd, 富士通株式会社Speech communication information recording program, speech communication information recording apparatus and speech communication information recording method
    US-2005166043-A1July 28, 2005Nokia CorporationAuthentication and authorization in heterogeneous networks
    US-2008250053-A1October 09, 2008Cvon Innovations LimitedUser Interface for Selecting Operators
    US-2008189760-A1August 07, 2008Cisco Technology, Inc.System and Method for Providing Application-Specific On-Line Charging in a Communications Environment
    US-2007076616-A1April 05, 2007AlcatelCommunication system hierarchical testing systems and methods - entity dependent automatic selection of tests
    US-7583964-B2September 01, 2009At&T Mobility Ii LlcMethod and apparatus to manage a resource
    US-8175574-B1May 08, 2012Cisco Technology, Inc.Methods and systems for selecting one or more charging profiles for a mobile data service session
    US-2008056273-A1March 06, 2008Ghyslain Pelletier, Kristofer SandlundInclusion of Quality of Service Indication in Header Compression Channel
    US-2004019539-A1January 29, 20043Com CorporationPrepaid billing system for wireless data networks
    US-2008318550-A1December 25, 2008Deatley DallasDevice Activation and Access
    US-2001048738-A1December 06, 2001Sbc Technology Resourses, Inc.Profile management system including user interface for accessing and maintaining profile data of user subscribed telephony services
    US-8351592-B2January 08, 2013Automated Business CompaniesRemote PBX system and advanced communication terminals
    US-7907970-B2March 15, 2011Qualcomm IncorporatedProviding quality of service for various traffic flows in a communications environment
    US-7084775-B1August 01, 2006User-Centric Ip, L.P.Method and system for generating and sending user-centric weather alerts
    US-2005198377-A1September 08, 2005Hill Ferguson, Blake Hayward, Ramakrishna SatyavoluMethod and system for verifying state of a transaction between a client and a service over a data-packet-network
    US-8744339-B2June 03, 2014Nokia Siemens Networks Oy, Fraunhofer Gesellschaft Zur Forderung Der Angewandten Forschung E.V.Wireless telecommunication system including a base station, relay node and method for global fair scheduling
    US-8447980-B2May 21, 2013Research In Motion LimitedSystem and method for processing encoded messages for exchange with a mobile data communication device
    US-8068824-B2November 29, 2011Avaya, Inc.Automated reconnection of interrupted voice call session
    US-8204794-B1June 19, 2012Amazon Technologies, Inc.Processing orders for wireless service
    US-8223655-B2July 17, 2012Embarq Holdings Company, LlcSystem and method for provisioning resources of a packet network based on collected network performance information
    US-7082422-B1July 25, 2006Microstrategy, IncorporatedSystem and method for automatic transmission of audible on-line analytical processing system report output
    US-2005091505-A1April 28, 2005Camiant, Inc.Dynamic service delivery platform for communication networks
    WO-2011002450-A1January 06, 2011Alcatel-Lucent Usa Inc, Alcatel-Lucent Shanghai Bell CompanySystème de facturation frontal générant des données de facturation pour une pluralité d'entités bénéficiant d'une part des recettes
    US-2009181662-A1July 16, 2009David Fleischman, Patrick Coffman, Jeremy Wyld, Christie Gregory N, Jerry Hauck, Liu Audra Men-Jhi, Sebastien Sahuc, Vempaty Muralidhar S, Shruti Chugh, Ashutosh Chaubey, Dallas De Atley, Jean-Marc Padova, Heath Culp, Bruno Posokhow, Brian Cassidy, Lehner John NPostponed Carrier Configuration
    US-2012020296-A1January 26, 2012Wefi, Inc.Providing easy access to radio networks
    US-8200775-B2June 12, 2012Newsilike Media Group, IncEnhanced syndication
    US-8050275-B1November 01, 2011Cisco Technology, Inc.System and method for offering quality of service in a network environment
    US-6970692-B2November 29, 2005International Business Machines CorporationCell phone minute usage calculation and display
    US-6947723-B1September 20, 2005Cellco PartnershipPostpay spending limit using a cellular network usage governor
    US-2008167027-A1July 10, 2008Patrice Gautier, Debbie Shimizu, Alexandrea Anderson, Eddy Cue, Monika Gromek, Kondrk Robert HGraphical user interface and method for mobile device activation
    US-2009287921-A1November 19, 2009Microsoft CorporationMobile device assisted secure computer network communication
    US-2009054030-A1February 26, 2009Microsoft CorporationMobile billboard and usage advisor
    US-2009315735-A1December 24, 2009Bhavani Neeraj S, Kulkarni GirishPatient flow management and analysis using location tracking
    WO-2007133844-A2November 22, 2007Camiant, Inc.Services de politique distribuée pour des réseaux mobiles et nomades
    US-7369848-B2May 06, 2008Roamware, Inc.Signaling gateway with multiple IMSI with multiple MSISDN(MIMM) service in a single SIM for multiple roaming partners
    US-7978686-B2July 12, 2011Hewlett-Packard CompanySystem and method for feature-based services control using SIP
    US-8554876-B2October 08, 2013Hewlett-Packard Development Company, L.P.User profile service
    US-7756534-B2July 13, 2010Alcatel-Lucent Usa Inc.Provision of location-based services utilizing user movement statistics
    US-8966018-B2February 24, 2015Trapeze Networks, Inc.Automated network device configuration and network deployment
    US-8812525-B1August 19, 2014Eventbrite, Inc.Local SQL files for mobile clients
    US-2007248100-A1October 25, 2007Microsoft CorporationQuality of service support for A/V streams
    US-2008120668-A1May 22, 2008Frank Chuen-Foo YauIntegrated IPTV display set and methods
    EP-1850575-A1October 31, 2007Research In Motion LimitedProcédé et dispositif pour surveiller et commander l'utilisation de ressources sans fil
    US-2012330792-A1December 27, 2012Cellco Partnership D/B/A Verizon WirelessOpen data transport bundle marketplace exchange
    US-2008212470-A1September 04, 2008Castaneda Frank J, Horvath Joseph K, Wrobel Anthony WMethod for application layer synchronous traffic shaping
    CN-101155343-AApril 02, 2008华为技术有限公司无线网络中终端加入多播广播业务的方法及其系统
    US-7203169-B1April 10, 2007Packeteer, Inc.Interface facilitating configuration of network resource utilization
    US-8503358-B2August 06, 2013T-Mobile Usa, Inc.Wireless device registration, such as automatic registration of a Wi-Fi enabled device
    US-8125897-B2February 28, 2012Embarq Holdings Company LpSystem and method for monitoring and optimizing network performance with user datagram protocol network performance information packets
    US-2003236745-A1December 25, 2003Hartsell Neal D, Fernander Robert B, Jackson Gregory J, Johnson Scott C, Qiu Chaoxin C, Richter Roger KSystems and methods for billing in information management environments
    US-8838752-B2September 16, 2014Broadcom CorporationEnterprise wireless local area network switching system
    US-7747240-B1June 29, 2010British Telecommunications Public Limited CompanyMethod of charging in a communications network
    US-8200163-B2June 12, 2012Carrier Iq, Inc.Distributed architecture for monitoring mobile communication in a wireless communication network
    US-8195093-B2June 05, 2012Darrin Garrett, Hong Leon LUsing a bluetooth capable mobile phone to access a remote network
    US-6765925-B1July 20, 2004Nortel Networks LimitedApparatus and method of maintaining state in a data transmission system
    US-7930446-B2April 19, 2011Intel CorporationMethods and apparatuses for wireless network communication wherein a universal serial bus request block (URB) is generated that will vary parameters that controls wireless transmission commands between devices
    US-2008130534-A1June 05, 2008Kabushiki Kaisha ToshibaData transmitting apparatus, data receiving apparatus, and data communication system
    US-2002116338-A1August 22, 2002Jean-Charles Gonthier, Miguel Cobo, John BarnaPrepaid access to internet protocol (IP) networks
    WO-2007107701-A2September 27, 2007British Telecommunications Public Limited CompanyProcédé de surveillance de dispositif de communication
    US-8200200-B1June 12, 2012Sprint Communications Company L.P.Localized mobile digital TV
    US-7320029-B2January 15, 2008Nokia CorporationQuality of service definition for data streams
    US-7577431-B2August 18, 2009Roamware, Inc.Providing multiple MSISDN numbers in a mobile device with a single IMSI
    US-2008279216-A1November 13, 2008Mobidia, Inc.System and Method of Traffic Management Over Mixed Networks
    WO-9965185-A2December 16, 1999British Telecommunications Public Limited CompanyCommunications network with tariff based on network load
    US-2004259534-A1December 23, 2004July Systems Inc.Policy service system and methodology
    US-2002049074-A1April 25, 2002AlcatelMethod of making a game available for a mobile telephony terminal of a subscriber and program modules and means therefor
    US-7653394-B2January 26, 2010Afx Technology Group International, Inc.Node-to node messaging transceiver network with dynamic routing and configuring
    JP-2005339247-ADecember 08, 2005Secured Communications:Kk, 株式会社セキュアード・コミュニケーションズ双方向ワンタイムid認証システム及び認証方法
    EP-1545114-A1June 22, 2005AlcatelProcédé et appareil pour la division du revenu de communication parmi les différents propriétaires
    WO-9927723-A1June 03, 1999Telefonaktiebolaget Lm Ericsson (Publ)Profils multiples de service d'abonne par station mobile dans un systeme de communication cellulaire
    JP-2006344007-ADecember 21, 2006Hitachi Ltd, 株式会社日立製作所Portable terminal identification system
    US-2011264923-A1October 27, 2011Rovi Solutions CorporationSelf-protecting digital content
    US-8406736-B2March 26, 2013Symbol Technologies, Inc.System and method for identifying and locating wireless devices that are being operated by unauthorized users
    US-7929973-B2April 19, 2011Cisco Technology, Inc.Balancing wireless access based on centralized information
    US-2002138599-A1September 26, 2002Mark Dilman, Danny RazMethod and apparatus for efficient Reactive monitoring
    US-8532610-B2September 10, 2013Qualcomm IncorporatedMethod and apparatus for monitoring usage patterns of a wireless device
    US-8285249-B2October 09, 2012Kajeet, Inc.Feature management of an electronic device
    US-7356337-B2April 08, 2008Starhome GmbhDialing services on a mobile handset and remote provisioning therefor
    US-2010188975-A1July 29, 2010Gregory G. RaleighVerifiable device assisted service policy implementation
    US-7881199-B2February 01, 2011Alcatel LucentSystem and method for prioritization of traffic through internet access network
    US-7868778-B2January 11, 2011David Norris KenwrightApparatus and method for proximity-responsive display materials
    US-8504690-B2August 06, 2013Broadcom CorporationMethod and system for managing network power policy and configuration of data center bridging
    US-7174156-B1February 06, 2007Sprint Spectrum L.P.Method and system for tracking and billing vocoder bypass calls in a wireless wide area network
    US-8239520-B2August 07, 2012Alcatel LucentNetwork service operational status monitoring
    US-8340678-B1December 25, 2012At&T Mobility Ii LlcIndicating radio bearer information to network applications
    US-8461958-B2June 11, 2013Wireless Data Solutions, LlcSystem for monitoring and control of transport containers
    US-9030934-B2May 12, 2015Qualcomm IncorporatedHost-based quality of service for wireless communications
    US-7634388-B2December 15, 2009International Business Machines CorporationProviding policy-based operating system services in an operating system on a computing system
    US-8347378-B2January 01, 2013International Business Machines CorporationAuthentication for computer system management
    US-8340628-B2December 25, 2012Qualcomm IncorporatedSystems and methods for localized wireless notification
    US-2007198656-A1August 23, 2007Citrix Systems, Inc.Methods and servers for establishing a connection between a client system and a virtual machine executing in a terminal services session and hosting a requested computing environment
    US-7925778-B1April 12, 2011Cisco Technology, Inc.Method and apparatus for providing multicast messages across a data communication network
    US-7644267-B2January 05, 2010Nokia CorporationControlling access to services in a communications system
    US-8155620-B2April 10, 2012Qualcomm IncorporatedMethod and apparatus for accounting in a mobile data packet network
    US-8045973-B2October 25, 2011Alcatel LucentMobile device subject to a communication restriction responding to a priority call
    US-7774323-B2August 10, 2010Sap Portals Israel Ltd.Method and apparatus for delivering managed applications to remote locations
    US-6684244-B1January 27, 2004Hewlett-Packard Development Company, Lp.Aggregated policy deployment and status propagation in network management systems
    US-8005009-B2August 23, 2011InMon Corp.Methods and computer programs for generating data traffic matrices
    US-7174174-B2February 06, 2007Dbs Communications, Inc.Service detail record application and system
    CN-101123553-AFebruary 13, 2008东南大学基于码分多址技术的移动无线局域网接入装置及方法
    US-2004054779-A1March 18, 2004Yoshiteru Takeshima, Masahiko NakaharaNetwork system
    US-2007140145-A1June 21, 2007Surender Kumar, Bonta Jeffrey D, Hill Thomas CSystem, method and apparatus for authentication of nodes in an Ad Hoc network
    US-2002138601-A1September 26, 2002Nixu OyProxy for content service
    US-2002176377-A1November 28, 2002Hamilton Thomas E.Service platform on wireless network
    US-2008050715-A1February 28, 2008Mark Golczewski, Marc CoreyEducational system and method having virtual classrooms
    US-9325737-B2April 26, 2016Motorola Solutions, Inc.Security based network access selection
    WO-2007120310-A2October 25, 2007Qualcomm IncorporatedConnectivité de protocole internet simultanée pour un terminal d'accès et un dispositif relié
    US-2011173678-A1July 14, 2011Futurewei Technologies, Inc.User and Device Authentication in Broadband Networks
    US-2009203352-A1August 13, 2009Xelex Technologies Inc.Mobile phone/device usage tracking system and method
    US-2008319879-A1December 25, 2008Jim Carroll, Jeffrey Rose, Jenny TaylorOptimized Communication Billing Management System
    US-2008032715-A1February 07, 2008Huawei Technologies Co., Ltd.Method for issuing paging messages, and msc/vlr

NO-Patent Citations (16)

    Title
    Accuris Networks, “The Business Value of Mobile Data Offload—a White Paper”, 2010.
    Anton, B. et al., “Best Current Practices for Wireless Internet Service Provider (WISP) Roaming”; Release Date Feb. 2003, Version 1.0; Wi-Fi Alliance—Wireless ISP Roaming (WISPr).
    Blackberry Mobile Data System, version 4.1, Technical Overview, 2006.
    Cisco Systems, Inc., “Cisco Mobile Exchange (CMX) Solution Guide: Chapter 2—Overview of GSM, GPRS, and UMTS,” Nov. 4, 2008.
    Client Guide for Symantec Endpoint Protection and Symantec Network Access Control, 2007.
    Dixon et al., Triple Play Digital Services: Comcast and Verizon (Digital Phone, Television, and Internet), Aug. 2007.
    Ehnert, “Small application to monitor IP trafic on a Blackberry—1.01.03 ”, Mar. 27, 2008; http://www.ehnert.net/MiniMoni/.
    European Commission, “Data Roaming Tariffs—Transparency Measures,” [online] retrieved from http://web.archive.org/web/20081220232754/http://ec.europa.eu/information—society/activities/roaming/data/measures/index—en.htm, Dec. 20, 2008 [retrieved May 16, 2012].
    Hartmann et al., “Agent-Based Banking Transactions & Information Retrieval—What About Performance Issues?” 1999.
    Loopt User Guide, metroPCS, Jul. 17, 2008.
    NetLimiter Lite 4.0.19.0; http://www.heise.de/download/netlimiter-lite-3617703.html from vol. 14/2007.
    Open Mobile Alliance (OMA), Push Architecture, Candidate Version 2.2; Oct. 2, 2007; OMA-AD-Push-V2—2-20071002-C.
    Ruckus Wireless—White Paper; “Smarter Wi-Fi for Mobile Operator Infrastructures” 2010.
    Wi-Fi Alliance Hotspot 2.0 Technical Task Group, “Wi-Fi Certified Passpoint™ (Release 1) Deployment Guidelines—Version 1.0—Oct. 2012”.
    Wi-Fi Alliance Technical Committee Hotspot 2.0 Technical Task Group, “Hotspot 2.0 (Release 1) Technical Specification—Version 1.0.0”; 2012.
    Windows7 Power Management, published Apr. 2009.

Cited By (0)

    Publication numberPublication dateAssigneeTitle